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A general asymptotic theory of diffusion flames
with application to cellular instability
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A general asymptotic formulation is presented for diffusion flames of large-activation-
energy chemical reactions. In this limit chemical reaction is confined to a thin zone
which, when viewed from the much larger diffusion scale, is a moving two-dimensional
sheet. The formulation is not restricted to any particular configuration, and applies to
conditions extending from complete combustion to extinction. The detailed structure
of the reaction zone yields jump conditions that permit full determination of the
combustion field on both sides of the reaction zone, as well as the instantaneous shape
of the reaction sheet itself. The simplified system is subsequently used to study the
intrinsic stability properties of diffusion flames and, in particular, the onset of cellular
flames. We show that cellular diffusion flames form under near-extinction conditions
when the reactant in the feed stream is the more completely consumed reactant,
and the corresponding reactant Lewis number is below some critical value. Cell sizes
at the onset of instability are on the order of the diffusion length. Predicted cell
sizes and conditions for instability are therefore both comparable with experimental
observations. Finally, we provide stability curves in the fuel and oxidant Lewis number
parameter plane, showing where instability is expected for different values of both
the initial mixture strength and the Damköhler number.

1. Introduction
The governing equations of chemically reacting flows consist of the fluid mechanics

equations supplemented by equations expressing the mass balance of the various
species involved in the chemical reaction (cf. Williams 1985). These equations are too
difficult to solve either explicitly or by numerical and other approximate methods. In
order to gain fundamental understanding of the complex nature of combustion prob-
lems, simplified theories are often suggested. These can be either obtained by physical
reasoning, or derived in a more systematic way by means of asymptotic methods.
There is a considerable advantage in deriving simplified theories: the formulation is
self-consistent and identifies clearly the underlying assumptions involved which can
be re-examined at a later stage.

For premixed systems several simplified theories have been derived and used in
describing the propagation and dynamics of premixed flames and their stability.
Examples which exploit the largeness of the activation energy parameter include the
slowly-varying-flame (SVF) and the near-equidiffusional-flame (NEF) formulations
(Buckmaster & Ludford 1982) which consider the Lewis number to be sufficiently
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distinct from, or sufficiently close to 1, respectively. Another example is the thin-
flame theory (Matalon & Matkowsky 1982, 1983) which is a NEF formulation that
also takes advantage of the small diffusion-to-hydrodynamic length ratio. For non-
premixed systems (diffusion flames) a general asymptotic formulation, applicable to
an arbitrary three-dimensional flame, does not exist. The mixture fraction formulation
(Peters 1983, 1986) is limited to unity-Lewis-number flames and, being expressed in
terms of a mixture fraction coordinate, is not convenient in situations where the
external fluid dynamical flow is not obvious a priori.

In this study, we derive a general formulation, not restricted to any particular
configuration, for diffusion flames. The simplified equations are multi-dimensional and
time-dependent and are expressed in terms of the physical coordinates. Furthermore,
they allow for density variations as well as for two distinct and general Lewis
numbers, one for the fuel and the other for the oxidant. The derivation is based on
the assumption that the activation energy parameter is large and, as such, parallels the
development of Linan’s (1974) seminal work which thoroughly describes the structure
of a planar diffusion flame in a counterflow with unity Lewis numbers. In this limit,
the chemical reactions are all confined to a thin zone which, when viewed on the much
larger diffusion scale, is a moving two-dimensional sheet. Although the structure of
the thin reaction zone reduces in form to that analysed by Linan, the associated
parameters that relate this structure to the external conditions on either side of the
sheet are spatially and temporally dependent. These conditions are expressed as jumps
for the temperature, mass fractions, velocity and pressure across the reaction sheet,
and are sufficient for the determination of the external combustion field as well as the
instantaneous shape of the reaction sheet. They include, in particular, expressions for
the fuel and/or oxidant leakage through the reaction zone which, when excessive, lead
to extinction. The formulation is therefore applicable to conditions extending from
complete combustion down to extinction. Finally, we note that the discussion in this
paper is limited to what Linan refers to as the ‘diffusion-flame’ or ‘near-equilibrium’
regime; the ‘premixed-flame’ regime, associated with a large leakage of one of the
two reactants can be similarly discussed.

It should be mentioned that Lewis number effects on diffusion flames have been pre-
viously discussed for particular configurations. For example, Chung & Law (1983) dis-
cussed the structure of several one-dimensional flame configurations, Kim & Williams
(1977) examined the extinction characteristics of a counterflow flame and Mills &
Matalon (1997, 1998) analysed the structure and extinction characteristics of burner-
generated spherical diffusion flames.

The large-activation-energy formulation that we derive is subsequently used to
examine the occurrence and onset of diffusive-thermal instabilities in diffusion flames.
Studies of intrinsic instabilities in flames have been predominantly concerned with
premixed systems. A manifestation of an intrinsic instability is the spontaneous
development of cellular structures, which is commonly observed in premixed flames.
It is known that the competing effects of thermal and mass diffusivities play a central
role in the development of cellular flames. One might therefore expect that they
play a similar role in the stability of diffusion flames; however, very little has been
done on the subject. Before giving a brief outline of our predictions, we first review
the experimental evidence of cellular diffusion flames and provide an account of the
relevant theoretical studies pertaining to stability issues.

The first known example of diffusive-thermal instability in diffusion flames is due
to Garside & Jackson (1951, 1953). They observed that when a mixture of hydrogen
and carbon dioxide, or hydrogen and nitrogen, was burnt in air, the surface of the
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resulting jet diffusion flame often had a polyhedral structure. The surface of the flame
in this case was formed of triangular cells in the shape of a polyhedron. The cells at
the base of the flame were approximately 0.7 cm in width. The polyhedral flame was
seen at relatively high flow rates and when the hydrogen was sufficiently diluted. Later,
Dongworth & Melvin (1976) carried out experiments using a splitter-plate burner
and the diffusion flame was formed with lean hydrogen–oxygen diluted in nitrogen.
Under normal conditions the base of the diffusion flame, close to the burner partition,
was straight. However, at sufficiently high flow velocities, and when the hydrogen
concentration was substantially reduced, a cellular flame base was observed. The cells
were about 1 cm in length. The same behaviour was noticed when the nitrogen in
the fuel stream was replaced by argon, but not when replaced by helium. Ishizuka &
Tsuji (1981) have also reported a similar behaviour in counterflow diffusion flames
when the hydrogen, in a hydrogen–oxygen flame, was diluted with nitrogen and
argon but not with helium. At near-extinction conditions, stripes formed on the
flame surface along the flow with a periodic structure in the unstrained cross-flow
direction. The wavelength of this periodic structure was not reported. Perhaps the
most elaborate study was the recent work of Chen, Mitchell & Ronney (1992), who
employed a slot burner and examined the occurrence of cellular flames in a variety of
fuels and diluents and for various mixture strengths. Their findings, consistent with
the earlier studies, were tabulated in table 1 of their paper. They pointed out that,
far from extinction, no mixture exhibited cellularity. Cellular flames were formed at
near-extinction conditions, when the Lewis number of the more completely consumed
reactant was sufficiently less than 1. Depending on the conditions, the observed cells
were approximately 0.7–1.5 cm in length.

The onset of diffusive-thermal instabilities in premixed flames is well understood.
A premixed system, removed from stoichiometry, depends primarily on a single Lewis
number Le defined as the ratio of the thermal diffusivity of the mixture (determined
by the abundant species in the mixture) to the mass diffusivity of the deficient species
(the binary diffusion coefficient of the deficient reactant and the inert) in the mixture.
Theory predicts (Sivashinsky 1977; Buckmaster & Ludford 1982) that when Le ≈ 1,
a premixed flame is stable to diffusive-thermal effects; instabilities develop only when
Le either exceeds, or is below, a critical value.† A cellular instability is predicted when
Le is sufficiently less than 1, and an instability associated with pulsations and/or the
development of travelling waves along the flame front when Le is sufficiently larger
than 1. It is therefore expected that the disparity between the diffusivities of fuel
and oxidant on one hand, and between mass and heat on the other, plays a similar
role in the spontaneous development of cells in diffusion flames. Although physical
arguments along these lines were suggested in some of the previously listed references,
a comprehensive theory has not been offered.

A complete theory on the stability of diffusion flames appears more complex than
that of premixed flames. First, for a diffusion flame there are two effective Lewis
numbers – one associated with the fuel, LF , and the other with the oxidant, LX . The
observations reported in Chen et al. (1992) suggest that, in general, the existence
of cellular flames is not restricted to LF = LX . Second, unlike premixed flames, the
structure of a diffusion flame varies with the Damköhler number D – the ratio of the

† The hydrodynamic instability, or Darrieus–Landau instability, resulting from the gas thermal
expansion is always present in premixed flames. The hydrodynamic instability, however, is relatively
weak for disturbances of long wavelengths, so that its influence can be minimized by restricting the
lateral size of the experimental apparatus.



108 S. Cheatham and M. Matalon

diffusion time to the chemical-reaction time. For very large D complete combustion
occurs in an infinitesimally thin reaction sheet as envisaged by Burke & Schumann
(1928), but for moderate values of D combustion is incomplete and there is leakage
of one or both reactants through the reaction zone. Furthermore, combustion is not
possible when D is too low; it is known that extinction occurs at D = Dex where
an excessive leakage of one or both reactants develops. As the experiments suggest,
cellular flames occur mostly at near-extinction conditions, i.e. when D is sufficiently
near Dex. The Damköhler number is therefore an important parameter that controls,
among other things, the onset of cellularity. Third, unlike a premixed flame there is
no characteristic speed associated with a diffusion flame. An observer moving with
the premixed front always sees a mass flux of fuel and oxidant approaching from the
unburned side of the flame. In contrast, the net mass flux through a diffusion flame, as
seen by an observer located at the reaction front, can be directed from the fuel side or
from the oxidant side. Observations seem to imply that a relation exists between the
direction of the mass flux through the reaction sheet and the occurrence of cellular
flames. All these considerations must therefore be incorporated in a complete theory.

While no comprehensive, theoretical study of diffusion flame stability exists, frag-
ments appear in the literature. Studies by Peters (1978), Matalon & Ludford (1980)
and Buckmaster, Nachman & Taliaferro (1983), concerned with the multiplicity of
solutions, examined the response of a diffusion flame to one-dimensional disturbances
while assuming unity Lewis numbers. Kirkby & Schmitz (1966), Fischer et al. (1994)
and Cheatham & Matalon (1996a, b) were concerned with the onset of oscillations in
diffusion flames. The only theoretical work that addresses the occurrence of cellular
flames is that of Kim, Williams & Ronney (1996) and Kim (1997). They performed
a linear stability analysis of a plane flame in the limit of large activation energy
(θ � 1) and for the case of equal Lewis numbers, LF = LX . It was shown in Kim
et al. (1996) that, for Lewis numbers less than 1 and for wavelengths comparable to
the diffusion length, flame instability exists for Dex < D < Dc, with the critical Dc
identifying the onset of instability. The growth rate was found to increase indefinitely
with the wavenumber k. Stabilization of small wavelengths occurs on a much shorter
scale, comparable to the reaction zone thickness, with disturbances evolving on the
corresponding fast time scale. A dispersion relation was then written by constructing a
‘composite expansion’ from the results corresponding to these two length scales, from
which the transverse cell size `T was estimated. It was found that `T ∼ (2π`D)θ−1/3

where `D is the diffusion length defined as the ratio of the thermal diffusivity of the
mixture to a characteristic velocity. Since these results are based on the asymptotic
limit of large θ, the onset of instability would therefore be associated with the de-
velopment of relatively small cells ∼ θ−1/3 in size. The analysis of Kim (1997) was
motivated by the desire to identify a distinguished limit that leads to results that are
free of the shortcomings of Kim et al. (1996). It was shown that O(1) cell sizes result
when the common Lewis number Le is close to 1, namely Le − 1 = O(θ−1). In this
case the onset of instability occurs for D = D∗ with D∗ close to but slightly larger
than Dc; more specifically with D∗ − Dc = O(θ−2).

In this paper we are also concerned with the stability of diffusion flames and, in
particular, with the onset of cellular flames. The analysis is based on the general
formulation that we derive in the first part of the paper and summarized in § 4. For
simplicity, we examine the stability of a one-dimensional diffusion flame with one
of the reactants (the fuel in the chosen set-up) transported, by means of convection
and diffusion, towards the other, which diffuses against the stream from some finite
location (see figure 7, below). Other configurations, such as a counterflow diffusion
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flame, can be similarly analysed; their solution, however, involves special functions
that render the analysis more complicated. The one-dimensional flame considered in
Kim et al. (1996) and Kim (1997) is somewhat different from ours; there the reactants
are supplied at two porous plates held a fixed distance from each other, and thus the
problem involves the additional separation distance as a parameter. Apart from the
different boundary conditions, whose effect on the stability results is not clear, both
studies assume constant density and a large-activation-energy parameter. However,
the derivations of the dispersion relations are different, as is the methodology used
to obtain solutions of the respective dispersion relations. The methodology adopted
by Kim et al. (1996) requires simultaneously solving a differential equation describing
the reaction zone structure, numerically. In the present approach, the structure of the
reaction zone is integrated once and for all, and the relevant information is contained
in the correlations that we have constructed as part of our general model. The simpli-
city and straightforward manner by which the dispersion relation is analysed permits
obtaining results over a wide range of parameters, as we do. Additional discussion of
the analysis of the dispersion relation may be found in Cheatham’s (1997) dissertation.

Our results show that, unlike Kim et al. (1996) and Kim (1997), the onset of cellular
flames occurs at D = D∗ with D∗ larger than Dc, and D∗ −Dc = O(1). Thus, the range
of instability extends to Dex < D < D∗ with the critical D∗ depending on all other
physico-chemical parameters. The wavelength associated with the maximum growth
rate at marginal stability, indicative of the dimension of the cells, is comparable to the
diffusion length such that `T ∼ 2π`D . The predicted cell size, therefore, compares well
with the experimental data. We show, in particular, that an instability results when
the reactant supplied in the feed stream is the more completely consumed reactant
and the corresponding Lewis number is below some critical value. Thus, when fuel
is convected against an oxidant ambient and, as a result of the prevailing conditions
the fuel is the more completely consumed reactant, cellular flames will occur when
LF < L∗F . The critical Lewis number L∗F depends on LX as well as on the initial
mixture strength φ. Cellular flames in this case are more likely to occur in more
diluted, or ‘leaner’ flames. Stability curves that map the Lewis-number parameter
plane, i.e. LF versus LX , are drawn for different values of the parameter φ and the
Damköhler number D. For the inverted flame, with a net mass flux directed from the
oxidant to the fuel side, the role of fuel and oxidant must be interchanged. Instability
in this case is predicted for ‘richer’ flames, provided LX < L∗X . However, oxidants
with such low Lewis numbers are seldom found, which explains why cellular flames
under such conditions are rarely observed. Finally we note that although the present
discussion has been limited to the onset of cellular flames, the dispersion relation that
we have derived exhibits other forms of instabilities, such as pulsating flames and
travelling wave solutions; these will be discussed in future publications.

The paper is made up of two parts and organized as follows. In the first part
we present the governing equations, the general structure of the reaction zone in
its intrinsic coordinates, and a summary of the simplified model. The second part
is devoted to flame stability and includes the description of the basic plane flame
solution, the derivation of the dispersion relation and its analysis as it pertains to the
onset of cellular flames.

2. Governing equations
We consider a gaseous combustion system in which the fuel and oxidant, initially

separated, are immersed in an inert gas that appears in abundance. For convenience,
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we assume that far to the left the mixture contains fuel but no oxidant, whereas far
to the right it contains oxidant but no fuel. The chemical activity that occurs in the
mixing layer is modelled by a one-step global irreversible reaction of the form

νF F + νX X → Products + {Q}
where νi is the stoichiometric coefficient of species i, with the subscripts F,X identifying
the fuel and oxidant, respectively, and where Q is the total chemical heat release. The
chemical reaction rate is assumed to be of Arrhenius type with an overall activation
energy E and a pre-exponential factor B. The reaction rate is therefore of the form

ω̃ = B
(
ρ̃Ỹ

WF

)(
ρ̃X̃

WX

)
e−E/R

oT̃ (2.1)

with ρ̃, T̃ the density and temperature of the mixture, Wi the molecular weight of
species i and Ro the universal gas constant. The tilde denotes dimensional quantities.

Letting ṽ be the velocity field, p̃ the pressure and Ỹ , X̃ the fuel and oxidant mass
fractions, the equations describing the mixing and chemical reaction processes are

∂ρ̃

∂t̃
+ ∇̃ · ρ̃ṽ = 0, (2.2)

ρ̃
Dṽ

Dt̃
= −∇̃p̃+ ρ̃g+ µ{∇̃2ṽ + 1

3
∇̃(∇̃ · ṽ)}, (2.3)

ρ̃cp
DT̃

Dt̃
− ∇̃ · (λ∇̃T̃ ) = Qω̃, (2.4)

ρ̃
DỸ

Dt̃
− ∇̃ · (ρ̃DF ∇̃Ỹ ) = −νFWF ω̃, (2.5)

ρ̃
DX̃

Dt̃
− ∇̃ · (ρ̃DX∇̃X̃) = −νXWX ω̃. (2.6)

They represent, respectively, mass, momentum and energy conservation of the whole
mixture, and mass balances for the fuel and oxidant. The operator D/Dt̃ ≡ ∂/∂t̃+ ṽ · ∇̃
is the convective derivative and g is the gravitational force (per unit mass). The
mixture’s properties, i.e. the viscosity µ, the thermal conductivity λ and the specific
heat (at constant pressure) cp, are all assumed constant. The molecular diffusivities
for the fuel and oxidant (relative to the inert gas) are assumed temperature dependent
such that ρ̃Di are constants. The energy equation (2.4) has been written for conditions
in which the burning takes place in open space with representative velocities much
smaller than the speed of sound. For such flows the spatial variations in pressure,
which balance the change in momentum described in (2.3), are small compared to the
pressure itself. Consequently, the rate of change of the kinetic energy of the mixture
and the work associated with these small changes in pressure are negligible. The small
pressure variations may also be neglected in the equation of state, which now reads

P̃c = ρ̃RoT̃ /W (2.7)

where P̃c is the constant ambient pressure and W the molecular weight of the mixture.
In general W depends on the mixture’s composition and, therefore, varies across the
combustion field; but for simplicity we shall take it as a constant.

Equations (2.2)–(2.7) must be supplemented by appropriate initial and boundary
conditions reflecting the way in which the fuel and oxidant are supplied and the fact
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that they are initially separated and may be provided at different temperatures. These
conditions introduce a characteristic velocity U and an initial fuel concentration
Ỹ−∞. We normalize the mass fractions of the fuel and oxidant with Ỹ−∞ and νỸ−∞
respectively, where ν = νXWX/νFWF is the mass-weighted stoichiometric coefficient
ratio. The ambient pressure Pc is used as a unit of pressure and q/cp, with q =

QỸ−∞/νFWF the heat released per unit mass of fuel supplied, as a unit of temperature.
Consequently, the characteristic density is ρ̃c = PcWcp/qR

o. The small pressure
variations in the momentum equation are thus proportional to the square of the
representative Mach number, namely ∼ Pc ρ̃−1

c /U
2. Finally the diffusion length `D ≡

λ/ρ̃ccpU is used as a unit of length and `D/U as a unit of time.
The characteristic chemical time is of the order of the inverse of the reaction

constant ∼ B exp (−E/RoT̃a) where T̃a is the ‘adiabatic flame temperature’ corres-
ponding to complete consumption of reactants.† Hence the ratio of the residence time
∼ λ/ρ̃acpU

2, where ρ̃a is the density corresponding to the state at which T̃ = T̃a, to
the chemical time defines a Damköhler number which can be properly written in the
form‡

D =
λ

ρ̃acpU2

(
RoT̃a

E

)3
νXcpW

qRoWF

B Ỹ−∞ e−E/RT̃a . (2.8)

The chemical reaction rate, in dimensionless form, becomes

ω = DT 2
a θ

3ρ2XY exp

{
θ(T − Ta)
T/Ta

}
(2.9)

with θ = qE/cpR
oT̃ 2

a the activation-energy parameter, or the Zeldovich number.
Hereafter the symbols without a tilde denote the same quantity but in dimensionless
form. The dimensionless governing equations become

∂ρ

∂t
+ ∇ · ρv = 0, (2.10)

ρ
Dv

Dt
= −∇p+ Fr−1ρeg + Pr{∇2v + 1

3
∇(∇ · v)}, (2.11)

ρ
DT

Dt
− ∇2T = ω, (2.12)

ρ
DY

Dt
− 1

LF
∇2Y = −ω, (2.13)

ρ
DX

Dt
− 1

LX
∇2X = −ω, (2.14)

ρT = 1, (2.15)

with eg a unit vector in the direction of gravity. The remaining parameters that

† In general, T̃a depends on the supply conditions and on the way in which the fuel and oxidant
are brought together; this in contrast to the more clearly defined ‘adiabatic flame temperature’ of a
premixed combustible mixture.
‡ This form assumes a distinguished limit that relates the magnitudes of the Damköhler number

and the activation energy which, as will become clearer, is the appropriate one for the asymptotic
treatment considered below. This limit covers the range of Damköhler numbers from an infinitely
fast rate (Burke–Schumann limit) down to extinction. A different distinguished limit is needed to
cover the range of Damköhler numbers from frozen conditions, or small D, up to ignition.
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appear in these equations are the Froude number Fr = U2/|g|`D , the Prandtl number
Pr = µcp/λ, and the Lewis numbers LF = λ/cpρ̃DF and LX = λ/cpρ̃DX .

In the following section we derive a general formulation, which is appropriate
for large-activation-energy chemical reactions. We shall therefore exploit the limit of
θ � 1 allowing the Damköhler number D, defined as in (2.8), to vary independently.
As we shall see, for a flame to exist D must be limited from below, so that Dex < D < ∞
with Dex corresponding to flame extinction.

3. The reaction zone structure
When the activation-energy parameter θ is large, the chemical activity is confined

to a thin zone which reduces, in the limit θ → ∞, to a surface. This surface, referred
to as the reaction sheet, is determined at any given instant by the function

F(x, t) = 0. (3.1)

The reaction sheet separates a region of primarily fuel from a region of primarily
oxidant. We shall identify the fuel region as the region where F < 0 and the oxidant
region as the region where F > 0. Furthermore, we shall assume that in the fuel region
X = o(1) and in the oxidant region Y = o(1). Thus, to leading order, both reactants
vanish at the reaction sheet and the temperature along the sheet is the adiabatic flame
temperature Ta, assumed constant.† This is the fast chemistry, or Burke–Schumann
limit of complete combustion (Burke & Schumann 1928). Spatial and temporal
variations in temperature along the reaction sheet are thus within O(θ−1) of Ta.

On either side of the reaction sheet the chemical reaction rate is exponentially small
(since T < Ta), and therefore negligible. If the solution in these ‘outer’ regions is
expanded in power series of θ−1, i.e. in the form

ρ ∼ ρ0(x, t) + θ−1ρ1(x,t) + θ−2ρ2(x, t) + · · · ,
v ∼ v0(x, t) + θ−1v1(x,t) + θ−2 v2(x, t) + · · · ,
p ∼ p0(x, t) + θ−1p1(x, t) + θ−2p2(x, t) + · · · ,
T ∼ T0(x, t) + θ−1T1(x, t) + θ−2T2(x, t) + · · · ,
Y ∼ Y0(x, t) + θ−1Y1(x, t) + θ−2Y2(x, t) + · · · ,
X ∼ X0(x, t) + θ−1X1(x, t) + θ−2X2(x, t) + · · · ,


(3.2)

then Y0 ≡ 0 for F > 0 and X0 ≡ 0 for F < 0. The remaining variables are determined
by solving the governing equations (2.10)–(2.15) with the reaction rate set to zero.
Appropriate conditions must then be added to the outer variables, relating their values
on both sides of the interface. These jump relationships are derived from analysing
the reaction zone structure, as we do next.

3.1. Intrinsic coordinates

Let r be the position vector of a point P in space, measured at time t, with respect
to a fixed coordinate system; hence

r = r(x, t). (3.3)

† This does not necessarily imply that the reaction sheet needs to be planar or nearly planar.
For example, under quite general conditions it can be shown that for unity Lewis numbers, the
temperature Ta along the reaction sheet, whatever its shape, is a constant. See the discussion in § 3.4
and the determination of Ta.
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Figure 1. The curvilinear coordinates.

The position of the point P may also be described by means of its distance n from the
reaction sheet and the position vector rf of the projection of P on the reaction sheet.
We denote the unit normal to the reaction sheet by n and use the intrinsic surface
coordinates (ξ1, ξ2) aligned with the principal directions of curvature at each point of
the reaction sheet to parameterize the surface (see figure 1). Thus rf = rf(ξ1, ξ2, t) and

r = rf(ξ1, ξ2, t) + n n(ξ1, ξ2, t), (3.4)

so that (ξ1, ξ2, n) may be taken as curvilinear coordinates of P . To avoid unnecessary
additional notation, we denote the time variable in the moving coordinate system also
by t. Let e1 and e2 denote unit vectors tangential to the parametric curves ξ2 = const.
and ξ1 = const., respectively, given by

e1 =
1

a1

∂rf
∂ξ1

, e2 =
1

a2

∂rf
∂ξ2

(3.5)

with ai = |∂rf/∂ξi|. Then e1, e2 and n = e1 × e2 form an orthogonal triad of unit
vectors. The orientation of the curvilinear coordinates is chosen such that n points in
the direction of the oxidant region, so that n > 0 corresponds to F > 0, and n < 0
corresponds to F < 0. The transformation (3.4) may be used to relate the variables
(x, y, z) in the fixed frame to the variables (ξ1, ξ2, n) in the moving frame. Standard
results from differential geometry (e.g. Weatherburn 1947), provide the scale factors

h1 = a1(1− nκ1), h2 = a2(1− nκ2), h3 = 1

used in the computation of the vector differential operators. Here κ1 and κ2 are
the principal curvatures of the reaction sheet surface in the ξ1- and ξ2-directions,
respectively. Thus, κ = (κ1+ κ2) = −∇ · n (evaluated at n = 0) is twice the mean
curvature of the surface. The gradient operator now takes the form

∇ = e1

1

h1

∂

∂ξ1

+ e2

1

h2

∂

∂ξ2

+ n
∂

∂n
(3.6)
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and the divergence, of a vector u say, is

∇ · u =
1

h1h2

[
∂

∂ξ1

(h2u1) +
∂

∂ξ2

(h1u2) +
∂

∂n
(h1h2u3)

]
(3.7)

where u1, u2, u3 are the components of u in the directions e1, e2 and n, respectively.
All other vector operations can be deduced from these in a straightforward manner
and appear in standard textbooks. Useful references, that utilize similar curvilinear
coordinates are, for example, Rosenhead (1963); Yao & Stewart (1996) and Ida &
Miksis (1998).

The time derivative in the fixed coordinates is related to that in the frame attached
to the reaction sheet by making the change

∂

∂t
→ ∂

∂t
+
∂ξ1

∂t

∂

∂ξ1

+
∂ξ2

∂t

∂

∂ξ2

− Vf ∂
∂n
,

where Vf ≡ −∂n/∂t is the velocity of the surface back along the normal and ∂ξi/∂t is
proportional to the instantaneous rate of change of the arclength in the ξi-direction.
Note that Vf is considered positive when the reaction sheet moves towards the fuel
region.

To examine the internal structure of the reaction zone, we introduce the stretching
transformation n = η/θ along with the ‘inner’ expansions

v ∼ V 0(ξ1, ξ2, η, t) + θ−1V 1(ξ1, ξ2, η, t) + θ−2V 2(ξ1, ξ2, η, t) + · · · ,
p ∼ P0(ξ1, ξ2, η, t) + θ−1P1(ξ1, ξ2, η, t) + θ−2P2(ξ1, ξ2, η, t) + · · · ,
T ∼ Ta + θ−1 τ1(ξ1, ξ2, η, t) + θ−2 τ2(ξ1, ξ2, η, t) + · · · ,
ρ ∼ ρa + θ−1 %1(ξ1, ξ2, η, t) + θ−2 %2(ξ1, ξ2, η, t) + · · · ,
Y ∼ θ−1y1(ξ1, ξ2, η, t) + θ−2y2(ξ1, ξ2, η, t) · · · ,
X ∼ θ−1x1(ξ1, ξ2, η, t) + θ−2 x2(ξ1, ξ2, η, t) · · · ,


(3.8)

where, as assumed, the fuel and oxidant mass fractions are O(θ−1) and the temperature
is within O(θ−1) of the adiabatic flame temperature Ta. The equation of state (2.15)
implies

ρa = 1/Ta, %1 = −ρ2
aτ1, %2 = −ρ2

aτ2 + ρ3
aτ

2
1. (3.9)

(Note the slightly different symbol used for the inner variables representing the
density). Introducing the stretching transformation and the inner expansions (3.8) in
the governing equations written in terms of the intrinsic coordinates, then collecting
like powers of θ, we obtain a series of systems of equations which we must consider
in turn. The solutions of these equations must be matched with the outer expansions
as η → ±∞. The matching conditions are simply obtained by expanding the outer
expansions near n = 0±. For example, for the pressure we have

p ∼ p±0 + θ−1

{
∂p0

∂n

∣∣∣∣±η + p±1

}
+ θ−2

{
1

2

∂2p0

∂n2

∣∣∣∣±η2 +
∂p1

∂n

∣∣∣∣±η + p±2

}
+ · · · ,

where the superscript ± denotes that the quantity is to be evaluated at n = 0+ or
n = 0−, respectively, and therefore depends on ξ1, ξ2 and t only. This implies that

P0 ∼ p±0 , P1 ∼ ∂p0

∂n

∣∣∣∣±η + p±1 , P2 ∼ 1

2

∂2p0

∂n2

∣∣∣∣±η2 +
∂p1

∂n

∣∣∣∣± η + p±2
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as η → ±∞, respectively. Similarly we can write the matching conditions for all
other variables. Finally, we note that in writing the inner expansions (3.8), we have
anticipated that, to leading order, all state variables are continuous across the reaction
sheet, namely

[ρ0] = [T0] = [Y0] = [X0] = 0, (3.10)

where the square bracket denotes the jump in the quantity, for example [ρ0] = ρ+
0 −ρ−0 .

For simplicity of discussion the equations of conservation of mass and momentum
are considered first, to be followed by an analysis of the equations for the temperature
and mass fractions.

3.2. Mass and momentum

It is convenient to express the velocities in the form V i = Uie1 + Vie2 + Win for the
inner variables and, equivalently, vi = uie1 + vie2 + win for the outer variables. To
leading order, we find that

∂W0

∂η
= 0,

∂2V 0

∂η2
= 0

which implies that V 0 = V 0(ξ1, ξ2, t) = v±0 . Thus, all velocity components are contin-
uous across the reaction sheet, namely

[v0] = 0. (3.11)

In particular [ρ0(w0 − Vf)] = 0, which implies that the mass flux across the reaction
zone is conserved. We shall denote by m the mass flux normal and relative to
the reaction sheet, so that m ≡ ρ(w − Vf). Consequently, we introduce the (outer)
expansion m = m0 + θ−1m1 + θ−2m2 + · · ·, with the mi obviously related to the ρi and
wi. The corresponding inner expansion is

m = M0(ξ1, ξ2, t) + θ−1M1(ξ1, ξ2, η, t) + θ−2M2(ξ1, ξ2, η, t) + · · · ,
where we have used (3.11) in indicating that M0, the leading term of the normal mass
flux at the reaction sheet, is independent of η.

To O(θ−1) the equations reduce to

(W0 − Vf)∂%1

∂η
+ ρa

∂W1

∂η
= − ρa

a1a2

{
∂

∂ξ1

(a2U0) +
∂

∂ξ2

(a1V0)− κa1a2W0

}
, (3.12)

∂2U1

∂η2
=
∂2V1

∂η2
= 0,

∂P0

∂η
− 4

3
Pr
∂2W1

∂η2
= 0, (3.13)

and must satisfy the matching conditions V 1 ∼ η(∂v0/∂n)
±+v±1 and %1 ∼ η(∂ρ0/∂n)

±+

ρ±1 as η → ±∞. The right-hand side of (3.12) does not depend on η so that, when
evaluated across the reaction zone, we obtain the jump relation

ρ0

[
∂w0

∂n

]
+ (w0 − Vf)

[
∂ρ0

∂n

]
= 0 (3.14)

or equivalently [
∂m0

∂n

]
= 0. (3.15)
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Integrating (3.12) once yields

ρaW1 + (W0 − Vf)%1 +
ρa

a1a2

(
∂

∂ξ1

(a2U0) +
∂

∂ξ2

(a1V0)− κa1a2W0

)
η = c(ξ1, ξ2, t)

(3.16)

with c(ξ1, ξ2, t) a constant of integration. Applying the matching conditions as η → ±∞
we find that

η

{
(w±0 − Vf)∂ρ

±
0

∂n
+ ρ±0

∂w±0
∂n

+
1

a1a2

(
∂

∂ξ1

(a2ρ
±
0 u
±
0 ) +

∂

∂ξ2

(a1ρ
±
0 v
±
0 )

)
− κρ±0 w±0

}
+(w±0 − Vf)ρ±1 + ρaw

±
1 = c.

The expression in the curly bracket, which is merely the continuity equation evaluated
at n = 0±, vanishes identically. The remaining part yields

[m1] ≡ [ρ0w1 + ρ1(w0 − Vf)] = 0 (3.17)

and determines c(ξ1, ξ2, t) = m−1 (or equivalently m+
1 ). Hence the variations in the

normal velocity component across the reaction zone are calculated from (3.16). The
remaining equations ( 3.13) imply that[

∂u0

∂n

]
=

[
∂v0

∂n

]
= 0, [p0]− 4

3
Pr

[
∂w0

∂n

]
= 0, (3.18)

[u1] = [v1] = 0, (3.19)

and also provide the expression∫ ∞
−∞
P0(η) dη = lim

η→∞(p+
0 η)− lim

η→−∞(p−0 η) + 4
3
Pr[w1] (3.20)

which will be needed later.

To complete the conditions needed to solve the outer system to O(1/θ), the equations
must be taken to the next order. Now, the continuity equation takes the form

∂%1

∂t
+
∂ξ1

∂t

∂%1

∂ξ1

+
∂ξ2

∂t

∂%1

∂ξ2

+
∂M2

∂η
− κ(ρaW1 + %1W0)

+

{
κ

a1a2

(
∂

∂ξ1

(a2U0) +
∂

∂ξ2

(a1V0)

)

− 1

a1a2

(
∂

∂ξ1

(a2κ2U0) +
∂

∂ξ2

(a1κ1 V0)

)
+ (2κ1κ2 − κ2)W0

}
ρaη

+
1

a1a2

{
∂

∂ξ1

(ρaa2U1 + %1a2U0) +
∂

∂ξ2

(ρaa1V1 + %1a1V0)

}
= 0.

When evaluated across the reaction zone and use is made of the matching conditions
as η → ±∞ one finds that the terms which have η as a common factor vanish
identically. These terms consist merely of the continuity equation differentiated with
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respect to n and evaluated at n = 0±. The remaining terms yield[
∂m1

∂n

]
= κVf[ρ1]−

[
∂ρ1

∂t
+
∂ξ1

∂t

∂ρ1

∂ξ1

+
∂ξ2

∂t

∂ρ1

∂ξ2

]

− 1

a1a2

[
∂

∂ξ1

(a2ρ0u1 + a2ρ1u0) +
∂

∂ξ2

(a1ρ0v1 + a1ρ1v0)

]
. (3.21)

The momentum equation to O(1/θ) gives

ρa

{
∂U0

∂t
+
∂ξ1

∂t

∂U0

∂ξ1

+
∂ξ2

∂t

∂U0

∂ξ2

+
U0

a1

∂U0

∂ξ1

+
V0

a2

∂U0

∂ξ2

− V 2
0

a1a2

∂a2

∂ξ1

+
U0V0

a1a2

∂a1

∂ξ2

}

+M0

∂U1

∂η
− κ1U0W0 = − 1

a1

∂P0

∂ξ1

+
Pr

3

{
1

a1

∂

∂ξ1

(
1

a1a2

∂

∂ξ1

(a2U0) +
1

a1a2

∂

∂ξ2

(a1V0)

)
+

1

a1

∂2W1

∂ξ1∂η
− 1

a1

∂

∂ξ1

(κW0)

}

+Pr

{
1

a1a2

∂

∂ξ1

(
a2

a1

∂U0

∂ξ1

)
+

1

a1a2

∂

∂ξ2

(
a1

a2

∂U0

∂ξ2

)
+
∂2U2

∂η2
− κ∂U1

∂η
+ (κ1κ2 − κ2

1)U0

−W0

a1

∂κ

∂ξ1

− 2κ1

a1

∂W0

∂ξ1

+
V0

a1

∂

∂ξ1

(
1

a1a2

∂a1

∂ξ2

)
− V0

a2

∂

∂ξ2

(
1

a1a2

∂a2

∂ξ1

)

+
U0

a2

∂

∂ξ2

(
1

a1a2

∂a1

∂ξ2

)
+
U0

a1

∂

∂ξ1

(
1

a1a2

∂a2

∂ξ1

)
− 1

a1a
2
2

∂a2

∂ξ1

∂V0

∂ξ2

+
1

a2
1a2

∂a1

∂ξ2

∂V0

∂ξ1

+
1

a1

∂V0

∂ξ2

∂

∂ξ1

(
1

a2

)
− 1

a2

∂

∂ξ2

(
1

a1

)
∂V0

∂ξ1

+
1

a1

∂U0

∂ξ1

∂

∂ξ1

(
1

a1

)}
, (3.22)

ρa

{
∂V0

∂t
+
∂ξ1

∂t

∂V0

∂ξ1

+
∂ξ2

∂t

∂V0

∂ξ2

+
U0

a1

∂V0

∂ξ1

+
V0

a2

∂V0

∂ξ2

− U2
0

a1a2

∂a1

∂ξ2

+
U0V0

a1a2

∂a2

∂ξ1

}

+M0

∂V1

∂η
− κ2V0W0 = − 1

a2

∂P0

∂ξ2

+
Pr

3

{
1

a2

∂

∂ξ2

(
1

a1a2

∂

∂ξ1

(a2U0) +
1

a1a2

∂

∂ξ2

(a1V0)

)
+

1

a2

∂2W1

∂ξ2∂η
− 1

a2

∂

∂ξ2

(κW0)

}

+Pr

{
1

a1a2

∂

∂ξ1

(
a2

a1

∂V0

∂ξ1

)
+

1

a1a2

∂

∂ξ2

(
a1

a2

∂V0

∂ξ2

)
+
∂2V2

∂η2
− κ∂V1

∂η

+(κ1κ2 − κ2
2)V0 − W0

a2

∂κ

∂ξ2

− 2κ2

a2

∂W0

∂ξ2

+
U0

a2

∂

∂ξ2

(
1

a1a2

∂a2

∂ξ1

)
− U0

a1

∂

∂ξ1

(
1

a1a2

∂a1

∂ξ2

)

+
V0

a1

∂

∂ξ1

(
1

a1a2

∂a2

∂ξ1

)
+
V0

a2

∂

∂ξ2

(
1

a1a2

∂a1

∂ξ2

)
− 1

a2
1a2

∂a1

∂ξ2

∂U0

∂ξ1

+
1

a1a
2
2

∂a2

∂ξ1

∂U0

∂ξ2

+
1

a2

∂U0

∂ξ1

∂

∂ξ2

(
1

a1

)
− 1

a1

∂U0

∂ξ2

∂

∂ξ1

(
1

a2

)
+

1

a2

∂V0

∂ξ2

∂

∂ξ2

(
1

a2

)}
, (3.23)
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and

ρa

{
∂W0

∂t
+
∂ξ1

∂t

∂W0

∂ξ1

+
∂ξ2

∂t

∂W0

∂ξ2

+
U0

a1

∂W0

∂ξ1

+
V0

a2

∂W0

∂ξ2

}

+M0

∂W1

∂η
+ κ1U

2
0 + κ2V

2
0 = −∂P1

∂η

+
Pr

3

{
κ

a1a2

(
∂

∂ξ1

(a2U0) +
∂

∂ξ2

(a1V0)

)
+

1

a1a2

∂

∂η

(
∂

∂ξ1

(a2U1) +
∂

∂ξ2

(a1V1)

)

− 1

a1a2

∂

∂ξ1

(a2κ2U0)− 1

a1a2

∂

∂ξ2

(a1κ1V0) + (2κ1κ2 − κ2)W0 − κ∂W1

∂η
+
∂2W2

∂η2

}

+Pr

{
1

a1a2

∂

∂ξ1

(
a2

a1

∂W0

∂ξ1

)
+

1

a1a2

∂

∂ξ2

(
a1

a2

∂W0

∂ξ2

)
+ (2κ1κ2 − κ2)W0

−κ∂W1

∂η
+
∂2W2

∂η2
+
U0κ1

a1a2

∂a2

∂ξ1

+
V0κ2

a1a2

∂a1

∂ξ2

+
U0

a1

∂κ1

∂ξ1

+
V0

a2

∂κ2

∂ξ2

− U0

a1a2

∂(a2κ2)

∂ξ1

+
κ

a1a2

(
U0

∂a2

∂ξ1

+ V0

∂a1

∂ξ2

)
− V0

a1a2

∂

∂ξ2

(a1κ1) + 2
κ1

a1

∂U0

∂ξ1

+ 2
κ2

a2

∂V0

∂ξ2

}
. (3.24)

When the first equation, (3.22), is integrated across the reaction zone and use is made
of (3.20) and its differentiated form∫ ∞

−∞
∂P0

∂ξ1

dη = lim
η→∞

(
η
∂p+

0

∂ξ1

)
− lim

η→−∞

(
η
∂p−0
∂ξ1

)
+ 4

3
Pr

[
∂w1

∂ξ1

]
,

one finds the following jump relationship:[
∂u1

∂n

]
=

1

a1

[
∂w1

∂ξ1

]
. (3.25)

In a similar way, the other two equations yield[
∂v1

∂n

]
=

1

a2

[
∂w1

∂ξ2

]
, (3.26)

[p1] + m0[w1] = 4
3
Pr

{[
∂w1

∂n

]
− κ[w1]

}
+ 1

3
Pr

1

a1a2

[
∂(a2u1)

∂ξ1

+
∂(a1v1)

∂ξ2

]
. (3.27)

3.3. Energy and species

As before, we introduce the stretching transformation and the inner expansions (3.8)
in the energy and species equations (2.12)–(2.14), written in terms of the intrinsic
coordinates, to obtain equations for the τi, yi and xi. When the energy and species
equations are added, so as to eliminate the nonlinear reaction term, one finds to
O(θ−1) and O(θ−2) the linear equations

∂2

∂η2

(
τ1 +

1

LF
y1

)
= 0,

∂2

∂η2

(
τ1 +

1

LX
x1

)
= 0, (3.28)
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∂2

∂η2

(
τ2 +

1

LF
y2

)
= M0

∂

∂η
(τ1 + y1) + κ

∂

∂η

(
τ1 +

1

LF
y1

)
, (3.29)

∂2

∂η2

(
τ2 +

1

LX
x2

)
= M0

∂

∂η
(τ1 + x1) + κ

∂

∂η

(
τ1 +

1

LX
x1

)
, (3.30)

which provide relations between the mass fractions and the temperature perturbations.
These equations are to be integrated subject to the matching conditions

τ1 ∼ ∂T0

∂n

∣∣∣∣±η + T±1 , τ2 ∼ 1

2

∂2T0

∂n2

∣∣∣∣±η2 +
∂T1

∂n

∣∣∣∣±η + T±2 ,

y1 ∼ ∂Y0

∂n

∣∣∣∣±η + Y ±1 , y2 ∼ 1

2

∂2Y0

∂n2

∣∣∣∣±η2 +
∂Y1

∂n

∣∣∣∣±η + Y ±2 ,

x1 ∼ ∂X0

∂n

∣∣∣∣±η +X±1 , x2 ∼ 1

2

∂2X0

∂n2

∣∣∣∣±η2 +
∂X1

∂n

∣∣∣∣±η +X±2 ,


(3.31)

as η → ±∞. Integrating (3.28) once yields the jump relationships[
∂T0

∂n

]
= − 1

LF

[
∂Y0

∂n

]
= − 1

LX

[
∂X0

∂n

]
, (3.32)

which reflect that, to leading order, the fuel and oxidant flow into the reaction sheet
in stoichiometric proportion. A second integration provides the expressions

τ1 +
1

LF
y1 =

∂T0

∂n

∣∣∣∣+η + T+
1 +

1

LF
Y +

1 , (3.33)

τ1 +
1

LX
x1 =

∂T0

∂n

∣∣∣∣−η + T−1 +
1

LX
X−1 , (3.34)

as well as the jump conditions

[T1] = − 1

LF
[Y1] = − 1

LX
[X1]. (3.35)

Now, integrating (3.29)–(3.30) once across the reaction zone yields the jump conditions[
m0T1 − ∂T1

∂n

]
= −

[
m0Y1 − 1

LF

∂Y1

∂n

]
= −

[
m0X1 − 1

LX

∂X1

∂n

]
; (3.36)

the information resulting from a second integration will not be needed in the present
discussion.

We now turn our attention to the energy equation

∂2τ1

∂η2
= −D x1y1e

τ1 (3.37)

which, after substituting (3.33) and (3.34) for y1 and x1, yields a nonlinear equation for
the temperature perturbation τ1, uncoupled from all other variables. By introducing
the transformation

τ1 = −δ−1/3(ϕ+ γζ) +
1 + γ

2
h∗X +

1− γ
2

h∗F ,

η = −{2δ−1/3ζ + h∗F − h∗X}
[
∂T0

∂n

]−1

,
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this equation, together with the corresponding matching conditions, can be reduced
to a simpler form which involves only two parameters:

γ = −
∂T0

∂n

∣∣∣∣− +
∂T0

∂n

∣∣∣∣+
∂T0

∂n

∣∣∣∣− − ∂T0

∂n

∣∣∣∣+ (3.38)

and

δ = 4LFLXD

[
∂T0

∂n

]−2

exp

{
1 + γ

2
h∗X +

1− γ
2

h∗F

}
. (3.39)

Here h∗F and h∗X are the excess/deficiency in the fuel and oxidant enthalpies, respect-
ively, given by

h∗F = T+
1 +

1

LF
Y +

1 , h∗X = T−1 +
1

LX
X−1 .

The equation, and the corresponding matching conditions that follow from (3.31),
now become

∂2ϕ

∂ζ2
= (ϕ2 − ζ2) exp [−δ−1/3(ϕ+ γζ)], (3.40)

∂ϕ

∂ζ
∼ −1 as ζ → −∞, ∂ϕ

∂ζ
∼ 1 as ζ → +∞, (3.41)

and

X−1 = LXSX, SX = δ−1/3 lim
ζ→−∞(ϕ+ ζ), (3.42)

Y +
1 = LFSF, SF = δ−1/3 lim

ζ→+∞(ϕ− ζ). (3.43)

The boundary value problem (3.40)–(3.41) which determines ϕ(ζ; γ, δ) is identical to
that previously written by Linan (1974) in analysing the counterflow diffusion flame.
As noted later, the general formulation based on a mixture fraction coordinate (Peters
1983, 1986) also results in this same problem. In both cases, however, unity Lewis
numbers were assumed. The generalization here applies to a general two-dimensional
reaction sheet and is not restricted to unity Lewis numbers. Once the solution ϕ
is known, the quantities SF and SX can be calculated and these, in turn, determine
Y +

1 and X−1 . Note that the conditions (3.42) and (3.43) signify that fuel and oxidant
are not necessarily completely consumed in the reaction zone. There are, in general,
O(θ−1) amounts of fuel and oxidant that pass through the reaction zone unburned.
As we shall see, the quantities SF and SX , which are proportional to the reactants
leakage Y +

1 and X−1 respectively, are needed to complete the formulation of the
problem to O(θ−1).

The reduced problem for ϕ depends only on the two parameters γ and δ. The
parameter γ is the ratio of the excess heat conducted to one side of the reaction sheet
to the total heat generated in the reaction zone. When γ = 0 there are equal fluxes of
heat directed away from the reaction sheet; the symmetry of the problem then implies
that SF = SX . If γ > 0 more heat is transported to the oxidant side; if γ < 0 more
heat is transported to the fuel side. Typically, the temperature peaks at the reaction
sheet which implies that [∂T0/∂n] < 0 and, unless the supply temperatures exceed
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Figure 2. Solutions of the inner structure equation for γ = 0. Note that for δ > δc = 0.84954 there
are two distinct solutions, symmetric with respect to ζ.

the adiabatic temperature Ta, a case that we do not consider here, −1 < γ < 1.†
The parameter δ measures the intensity of the chemical reaction rate. As δ → ∞, a
limit reached when the Damköhler number D is infinitely large, the exponential in
equation (3.40) tends to 1 and the problem reduces to

∂2ϕ

∂ζ2
= ϕ2 − ζ2,

∂ϕ

∂ζ
∼ ±1 as ζ → ±∞,

which possesses a unique solution (found numerically) such that ϕ ∼ ±ζ + o(1) as
ζ → ±∞. Then SF = SX = 0. This limit corresponds to the Burke–Schumann limit of
complete combustion.

It should be noted that, due to the symmetry of the boundary value problem
(3.40)–(3.41) with respect to γζ, it suffices to consider 0 6 γ < 1 only. It is easily seen
that ϕ(ζ;−γ, δ) = ϕ(−ζ; γ, δ) so that, when γ is negative, SF is simply obtained from
SX by replacing γ with −γ. In attempting to define the functions SF (γ, δ) and SX(γ, δ)
we shall be concerned with γ > 0 with the understanding that SF (−γ, δ) = SX(γ, δ)
and SX(−γ, δ) = SF (γ, δ).

Numerical solutions of the boundary value problem (3.40)–(3.41) were obtained
using COLSYS, an ODE integrator that uses a collocation method (see Asher,
Christiansen & Russel 1981). Representative solutions for several values of δ are
shown in figures 2 and 3 for two values of γ. Figure 2 corresponds to γ = 0 and, as
expected, the solutions are symmetric with respect to ζ = 0. Note that for δ = 0.856
there are two curves, one on each side of the curve corresponding to δ = δc = 0.84954
(the dark curve in the figure). Similarly, there are two distinct solutions for all δ > δc.
Figure 3, which corresponds to γ = 0.4, shows a similar behaviour except that now
the solutions are no longer symmetric with respect to ζ = 0. Thus, for δ larger than a
critical value δc, the solution is multi-valued, there is a unique solution for δ = δc and

† When |γ| > 1 there is a net heat flux directed towards the reaction sheet and, correspondingly
an O(1) rather than O(1/θ) leakage of fuel and/or oxidant. A different asymptotic treatment is
required in this case.
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Figure 3. Solutions of the inner structure equation for γ = 0.4. Note that for δ > δc = 0.8281 there
are two distinct solutions which are no longer symmetric with respect to ζ.
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Figure 4. Interpolated and exact numerical values of SF versus δ − δc.

no solution for δ < δc. The critical value δc depends solely on γ. Based on numerical
computations, Linan (1974) provides an approximation for δc as

δc = exp (1) {(1− |γ|)− (1− |γ|)2 + 0.26 (1− |γ|)3 + 0.055 (1− |γ|)4}. (3.44)

Hence, for moderate values of δ > δc the system has two physically relevant solutions;
two different quantities of the reactants leakage SF and SX are possible. This is
illustrated in figures 4 and 5, which show the dependence of SF and SX on δ − δc for
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various values of γ. For a given δ the solution on the lower branch, in contrast to its
counterpart on the upper branch, corresponds to a state with a higher temperature
and smaller fuel and oxidant leakages. The solutions on the lower branch tend to the
Burke–Schumann limit of complete combustion when δ → ∞. The solutions on the
upper branch correspond to states with increasingly large reactant leakage and thus
become invalid when δ is sufficiently large. We also note from the figures that when
γ = 0 the temperature profile in the reaction zone is symmetric: there is an equal flux
of heat directed towards the fuel as towards the oxidant and SF = SX . When γ > 0,
more heat is conducted towards the oxidant side (ζ → −∞) which, consequently, is
more completely consumed, namely SX < SF . The reverse is true when γ < 0. At
δ = δc we see that SF →∞ and SX → 0 as γ → 1; and similarly SX →∞ and SF → 0
as γ → −1.

From the expression (3.39) for δ it is clear that solutions likewise exist only for
values of the Damköhler number D above a critical value, Dex. No burning is possible
for D < Dex and, since D is a physically controllable parameter, Dex identifies the
extinction condition. We note that when the available enthalpies associated with
the fuel and oxidant h∗F and h∗X both vanish, the parameter δ is proportional to
the Damköhler number D. Consequently δc ∝ Dex and they both represent the
same physical state – the critical state below which burning is no longer possible.
Generally speaking, this will be the case when the Lewis numbers are both equal
to 1; the enthalpies T + Y and T + X are now conserved scalars (i.e. each satisfy
an equation with no chemical-source term) and the exact solution can be written
for these quantities without recourse to the large-activation-energy approximation.
Any perturbation must therefore be equal to zero so that h∗F = h∗X = 0. When the
available enthalpies are not zero, the expression (3.39) is an implicit relation for the
determination of δ because h∗F and h∗X depend on the reactants leakage SF and SX
which, in turn, depend on δ. As a result, δc does not necessarily correspond to Dex and
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Figure 6. Response curves of SF ∼ fuel leakage versus the Damköhler number D for several values
of LF ; calculated for LX = 1.0, φ = 1, γ = 0. The star marks the state corresponding to δc; the
circle marks the state corresponding to extinction.

so does not identify the extinction condition. This has been previously recognized by
Kim & Williams (1997). To clarify this point further we have marked on the response
curve in figure 6 the state corresponding to δc. The graph shows the dependence
of the fuel leakage LFSF on the Damköhler number D/LF . We note that the state
corresponding to δc coincides with Dex when LF = 1; it corresponds to a state on
the lower branch of the response curve for LF < 1 and to a state on the upper
branch of the response curve when LF > 1. Although the results in this figure are
illustrated for the case γ = 0, LX = 1, the demonstrated trend appears to be quite
general.

We note that unity Lewis numbers is not a sufficient condition for the exponent
in (3.39) to vanish. Although in this case the enthalpies T + Y and T + X satisfy
equations with no chemical-source term, the boundary conditions associated with
these quantities could be coupled to the remaining equations in such a way as to
give rise to non-zero h∗F and h∗X . This was found to be the case when analysing
the structure of burner-generated spherical diffusion flames (Mills & Matalon 1997,
1998); the drop in the available enthalpies in that case was associated with heat
losses, either to the surface of the burner or by thermal radiation. In the latter δc was
associated with two values of D, lower and upper limits beyond which no burning is
possible.

The curves shown in figures 4 and 5 were generated numerically. The graphs were
subsequently used to write down interpolations for SF and SX as functions of δ and
γ. This was done with the help of KaleidaGraph (Abelbeck Software, copyright 1994,
version 3.04). The interpolations are presented here only for 0 6 γ < 1 because,
and as noted earlier, SF and SX must be interchanged when −1 < γ 6 0. Separate
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interpolations were found for the upper branches and lower branches of these curves,
as follows.

Lower branch

SF = a0 δ
−4/3 exp {−a1(δ − δc)a2}, (3.45)

a0 = 0.61923 + 3.2523γ + 0.52069 γ2,

a1 = 1.9077− 1.901γ + 1.055 γ2,

a2 = 0.46137− 0.15374 γ − 0.06769 γ4 − 0.23288 γ6;

SX = b0δ
−4/3 exp {−b1(δ − δc)b2}, (3.46)

b0 = 0.61923 (1− γ)15 exp {10.469 γ},
b1 = 1.9077 + 11.588 γ2 − 17.014 γ4 + 55.865 γ6,

b2 = 0.46137 + 0.27706 γ − 0.2029 γ2.

These expressions reflect the following properties of the exact numerical solution:
SF → 0 and SX → 0 as δ →∞; SF = SX for γ = 0; ∂SF/∂δ → −∞ and ∂SX/∂δ → −∞
as δ → δc; SX ≡ 0 for γ = 1.

Upper branch

SF = δ−1/3 {q0 + q1(δ − δc)q2}, (3.47)

q0 = 0.72704 (1− γ)−0.63858 exp (1.4311γ0.5696),

q1 = 2.7108 +
10.788 tan (πγ/2)

1 + 2.5459γ − 2.8114γ2
,

q2 = 0.625;

SX = δ−1/3 {r0 + r1(δ − δc)r2}, (3.48)

r0 = 0.72704 (1− γ)15 exp (10.451γ),

r1 = 2.7108 (1− γ)5.8507,

r2 = 0.625− 0.49221γ + 2.0203 γ2 − 4.2464 γ3 + 4.2286 γ4.

These expressions reflect the following properties of the exact numerical solution:
SF → ∞ and SX → ∞ as δ → ∞; SF = SX for γ = 0; ∂SF/∂δ → ∞ and ∂SX/∂δ → ∞
as δ → δc; SF → ∞ and SX → 0 as γ → 1 for every δ. We also note that the fuel
and oxidant leakage at extinction are given simply by SF = δ−1/3q0 and SX = δ−1/3r0,
respectively. Finally, we point out that the numerical result and the interpolations
are both plotted in figures 4 and 5. With the exception of the case γ = 1, where the
asymptotic analysis becomes strictly invalid, the agreement is excellent.

3.4. Mixture fraction formulation

In this section we show that our formulation reduces to Peter’s mixture fraction
formulation (Peters 1983, 1986) when unity Lewis numbers is assumed. For a one-step
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chemistry a convenient definition of the mixture fraction Z is

Z =
Y −X +X∞

1 +X∞
,

where X∞ is the oxidant mass fraction at the oxidant boundary. Note that, since we
have used νỸ−∞ as a unit for the oxidant mass fraction,

X∞ =
X̃∞/νXWX

Ỹ−∞/νFWF

=
1

φ

is the initial ‘mixture strength’, namely the ratio of oxidant mass fraction supplied
to the oxidant side to the fuel mass fraction supplied to the fuel side normalized by
the stoichiometric proportions. Its reciprocal, φ, can be considered as an ‘equivalence
ratio’ based on the supply conditions. The mixture fraction thus defined varies between
zero and 1; it is zero at the oxidant boundary and 1 in the fuel stream. Furthermore,
it satisfies

ρ
DZ

Dt
− ∇2Z = (1− L−1

X )∇2X − (1− L−1
F )∇2Y (3.49)

so that, when LF = LX = 1, the right-hand side vanishes and the mixture fraction
Z is a conserved scalar (provided of course that the boundary conditions do not
introduce additional source terms).

The stoichiometric value of the mixture fraction is given by Zst = X∞/(1 + X∞) =
(1+φ)−1 so that Z(x, t)−Zst = 0 represents the stoichiometric level surface. For unity
Lewis numbers this representation is identical to F(x, t) = 0 so that n = −∇Z/|∇Z |.
A coordinate transformation from {x, y, z, t} to {x, y, Z(x, y, z), t} readily implies that

− ∂

∂n
= |∇Z | ∂

∂Z
+
∇Z · ∇T

|∇Z | , ∇T ≡ (∂x, ∂y)

so that [
∂T

∂n

]2

= |∇Z |2
[
∂T

∂Z

]2

.

Since T also satisfies reaction-free equations on either side of the reaction sheet, it
may be expressed as a linear combination of Z , namely

T =

{
T∞ + (1 + T−∞ − T∞)Z, 0 < Z < Zst

T−∞ + (X∞ − T−∞ − T∞)(1− Z), Zst < Z < 1,

where T−∞ and T∞ denote the temperatures far away in the fuel and oxidant regions,
respectively. The common value at Z = Zst is the adiabatic flame temperature Ta
given by

Ta = T∞ + (1 + T−∞ − T∞)(1 + φ)−1. (3.50)

Also one finds that [∂T/∂Z]2 = (1− Zst)
−2 so that

δ =
4(1− Zst)

2

|∇Z |2 D

is inversely proportional to the scalar dissipation rate χ ≡ |∇Z |2 (which in dimensional
form is defined as χ̃ = D|∇Z |2 and has therefore units of 1/s). We also note that the
description of the reaction zone requires introducing the stretching transformation
ξ = (Z−Zst)/θ; one then recovers the structure equation (3.37) but with the left-hand
side replaced by |∇Z |2(∂2τ1/∂ξ

2) as in Peters (1983); see also Linan & Williams (1993).
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As a final comment we would like to mention that for non-unity Lewis numbers the
stoichiometric level surface F = 0, which we have identified as the reaction sheet to
within O(θ−1), does not coincide with the surface Z = Zst. In this case Z is no longer
a conserved scalar, as is clear from (3.49), and the jump conditions across Z = Zst are
not obvious. As a result of preferential diffusion, iso-contours of Z would be denser in
some regions than in others so that profiles of temperature and concentration would
no longer depend solely on Z . Attempts to generalize the definition of the mixture
fraction, by weighting the mass fractions with the corresponding Lewis number, lead
to cumbersome expressions that do not resolve this difficulty.

4. Summary–the model
The derivation in the previous section shows that, for a large activation energy, the

problem simplifies to a free boundary problem: the chemical activity is confined to
a sheet, F(x, t) = 0, on either side of which one only needs to solve the reaction-free
equations, i.e. equations (2.10)–(2.15) with ω = 0. The jump conditions across the
reaction sheet, carried out to O(θ−1), adjust the variables so as to account for the
heat release and the degree of fuel and oxidant consumption that take place in the
reaction zone. Here we summarize the results and express them in a coordinate-free
form.

To leading order, the following jump relationships must be satisfied across F = 0:

[T0] = [Y0] = [X0] = 0, (4.1)[
∂T0

∂n

]
= − 1

LF

[
∂Y0

∂n

]
= − 1

LX

[
∂X0

∂n

]
, (4.2)

[v0 · n] = 0, [n× (v0 × n)] = 0, (4.3)[
∂

∂n
(v0 · n)

]
= m0

[
∂T0

∂n

]
,

[
∂

∂n
(n× (v0 × n))

]
= 0, (4.4)

[p0] = 4
3
Pr

[
∂

∂n
(v0 · n)

]
. (4.5)

These, together with the requirements of complete combustion, namely

Y0

∣∣
F=0

= X0

∣∣
F=0

= 0, (4.6)

suffice to solve the equations and determine the unknown function F(x, t). The unit
normal n, and the velocity of the surface Vf are given by

n =
∇F
|∇F | , Vf = − 1

|∇F |
∂F

∂t
,

respectively. Note that the velocity vector was decomposed into its normal and
tangential components, v = v · n + n × (v × n), and that m = ρ(v · n − Vf)|F=0 is the
mass flux normal to the reaction sheet. Finally, we point out that once the solution is
determined, the parameter γ can be evaluated at every point along the sheet.

To O(θ−1), the following jump relationships must be satisfied across F = 0:

[T1] = − 1

LF
[Y1] = − 1

LX
[X1], (4.7)



128 S. Cheatham and M. Matalon[
m0T1 − ∂T1

∂n

]
= −

[
m0Y1 − L−1

F

∂Y1

∂n

]
= −

[
m0X1 − L−1

X

∂X1

∂n

]
, (4.8)

[v1 · n] = m0[T1], [n× (v1 × n)] = 0, (4.9)[
∂

∂n
(ρ0v1 + ρ1v0) · n

]
= −

[
∂ρ1

∂t

]
+ κ[(ρ0v1 + ρ1v0) · n]

−[∇ · (n× ((ρ0v1 + ρ1v0)× n))], (4.10)[
∂

∂n
(n× (v1 × n))

]
= [∇⊥(v1 · n)], (4.11)

[p1] = −m2
0[T1] + 4

3
Pr

{[
∂

∂n
(v1 · n)

]
− κ[v1 · n]

}
+ 1

3
Pr [∇ · (n× (v1 × n))], (4.12)

where ∇⊥ denotes the surface gradient, namely ∇ ≡ ∇⊥+ n ∂/∂n. These together with
the conditions

Y1

∣∣
F=0+ = LF SF (γ, δ), X1

∣∣
F=0− = LX SX(γ, δ), (4.13)

where δ is given implicitly by

δ = 4LFLXD

[
∂T0

∂n

]−2

exp

{
1 + γ

2
h∗X +

1− γ
2

h∗F

}
,

solve the equations at this order. Finally, we note that the relations (3.45)–(3.48)
can be used for SF and SX without recourse to the numerical integration and that
h∗F = T1 + L−1

F Y1

∣∣
F=0+ and h∗X = T1 + L−1

X X1

∣∣
F=0− can be expressed in terms of SF

and SX .
The location of the reaction sheet to O(1) is defined quite naturally as the stoi-

chiometric level surface, i.e. the location where the fuel and oxidant are completely
consumed and the temperature reaches the adiabatic flame temperature. There is
no such compelling criterion to identify an O(θ−1) correction to the location of the
reaction sheet. Its determination is in fact arbitrary: any well-defined position within
the infinitely wide reaction zone (−∞ < η < ∞) can be used for this purpose. One
choice is clearly ηf = 0: the reaction sheet remains identified as the stoichiometric
level surface up to O(θ−1). Any other choice introduces the additional unknown ηf
into the formulation which consequently requires an appropriate condition for its
determination. A natural choice is of course to identify ηf with the position η where
the temperature τ1 reaches its maximum value. This, however, is not a very convenient
choice because τ1 is only known numerically. Another possible choice is to identify
ηf as the position where the temperature perturbation remains continuous to O(θ−1),
namely to impose the condition

[T1] + ηf

[
∂T0

∂n

]
= 0. (4.14)

This choice turns out to be convenient if one combines the expressions for the first
two orders of the expansions in 1/θ. Thus, if the symbols identify the first two terms
in the expansions (3.2), for example T = T0(x, t) + θ−1T1(x, t) etc., we find that the
jump conditions across F(x, t), which is now a distance ηf/θ from the stoichiometric
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level surface, are as follows:

[T ] = [Y ] = [X] = 0,[
∂T

∂n

]
= − 1

LF

[
∂Y

∂n

]
= − 1

LX

[
∂X

∂n

]
,

[ρ(v · n)] = 0, [n× (v × n)] = 0,[
∂

∂n
ρ(v · n)

]
= −[∇ · (n× (ρv × n)],[

∂

∂n
(n× (v × n))

]
= [∇⊥(v · n)],

[p] = 4
3
Pr

[
∂

∂n
(v · n)

]
+ 1

3
Pr [∇ · (n× (v × n))].

In addition, we have the requirements

Y
∣∣
F=0+ = LF θ

−1SF (γ, δ), X
∣∣
F=0− = LXθ

−1SX(γ, δ),

with

γ =

{
∂T

∂n

∣∣∣∣
F=0+

+
∂T

∂n

∣∣∣∣
F=0−

}[
∂T

∂n

]−1

,

δ = 4LFLXD

[
∂T

∂n

]−2

exp

{
(Tf − Ta)θ +

1− γ
2

SF +
1 + γ

2
SX

}
,

where Tf is the flame temperature, i.e. the temperature at the reaction sheet, which
differs from the adiabatic temperature Ta associated with complete combustion by
an O(θ−1) amount.

5. Diffusive-thermal instability
In order to examine the onset of instability in diffusion flames and the dependence

of the results on all relevant parameters, it is imperative to study a simple diffusion
flame model not affected by external influences such as hydrodynamic or acoustic dis-
turbances. It is well known that a steady, planar diffusion flame in a one-dimensional
unbounded domain is not possible. While a planar diffusion flame can be established
in the stagnation-point flow of two opposed jets, one of fuel and the other of oxidant,
the flow field in this case is two-dimensional; the flame is under stretch, which gener-
ally exerts a strong stabilizing influence.† Thus, to retain one-dimensional simplicity,
we consider the semi-infinite model as depicted in figure 7.

Fuel is fed from the bottom of a sufficiently long chamber at a constant velocity
U. Conditions at the top of the chamber are maintained constant by a sufficiently
fast flowing stream across the exit from which the oxidant diffuses inwards. Chemical
reaction occurs within the chamber in a region centred near the location where fuel
and oxidant meet at stoichiometric proportions. The combustion products that reach
the top of the chamber are washed out by the cross-stream, thus ensuring that the
conditions at the top remain as prescribed. It should be pointed out that the equivalent
problem, in which oxidant is fed from the bottom of the chamber and fuel diffuses

† A modest stretch has a stabilizing influence. But when the stretch rate is large enough to
threaten extinction, the instability can return, as shown in Buckmaster & Short (1999).
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Oxidant stream

Fuel

U

x =0

Reaction sheet
x = xf

Figure 7. The one-dimensional flame configuration.

in from the top, can be readily discussed by interchanging the role played by the two
reactants. However, as we shall see, the reactant introduced in the feed stream plays
a special role in the stability properties. In the configuration shown in figure 7, for
example, an observer sitting at the reaction zone sees a net mass flux directed from
the fuel towards the oxidant side. In the reverse configuration, the ‘inverse’ diffusion
flame, the net mass flux will be directed from the oxidant towards the fuel side.

Let the fuel concentration in the feed stream be Ỹ−∞ and the oxidant concentration
at the top of the chamber be X̃∞. The temperature far upstream, T̃−∞, and at the
top of the chamber, T̃top, are both scaled with respect to q/cp, the characteristic
temperature introduced earlier. In dimensionless form, the boundary conditions are
therefore

T = T−∞, Y = 1, X = 0 as x→ −∞, (5.1)

T = T−∞ + ∆T , Y = 0, X = φ−1 at x = 0, (5.2)

where the temperature differential ∆T = cp(T̃top− T̃−∞)/q can be positive or negative.

We invoke the constant-density approximation in order to suppress hydrodynamical
disturbances, so that the flow field remains uniform and undisturbed. Hence ρ = 1
and v = 1i and the (dimensionless) governing equations, to be solved on either side
of the reaction sheet, simplify to

∂T

∂t
+
∂T

∂x
− ∇2T = 0, (5.3)

∂Y

∂t
+
∂Y

∂x
− 1

LF
∇2Y = 0, (5.4)

∂X

∂t
+
∂X

∂x
− 1

LX
∇2X = 0. (5.5)

Across the reaction zone the only relevant jump relationships are (4.1), (4.2), (4.6)
and (4.7), (4.8), (4.13).
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5.1. The steady planar flame

The steady one-dimensional solution of this problem, describing a planar diffusion
flame, expressed in power series of θ−1as in (3.2) is

T ∼



T−∞ + (e−xf + ∆T − 1)ex

+
T 2
a

θ

{
LF

LX

(1− eLXxf )− LX(1− exf )

1− eLFxf
− SX

SF

}
SF ex−xf , x < xf

T−∞ + 1 + (∆T − 1)ex − T 2
a

θ

{
1− ex

1− eLFxf

}
LFSF, x > xf,

Y ∼


1− eLF (x−xf ) +

T 2
a

θ

{
1− LF

LX

1− eLXxf

1− eLFxf
+
SX

SF

}
LFSF eLF (x−xf ), x < xf

T 2
a

θ

{
1− eLFx

1− eLFxf

}
LFSF, x > xf

X ∼


T 2
a

θ
LXSX eLX (x−xf ), x < xf

(1 + φ−1)eLXx − 1 +
T 2
a

θ

{
1− eLXx

1− eLFxf

}
LFSF, x > xf,

with the location of the reaction sheet given by

xf = − ln {(1 + φ−1)1/LX}. (5.6)

Note that xf depends on the Lewis number of the reactant that diffuses against
the stream. Thus, for the ‘inverse’ diffusion flame the location of the reaction sheet
depends on LF rather than LX . The adiabatic flame temperature is given by

Ta = 1 + T−∞ + (∆T − 1)(1 + φ−1)−1/LX (5.7)

which agrees with (3.50) when LX = 1.
The parameter γ takes the simple form

γ = −1 + 2(1 + ∆T )

(
φ

1 + φ

)1/LX

(5.8)

and is a measure of the mixture’s strength in the reaction zone. Here too LX is
replaced by LF for the ‘inverse’ diffusion flame. We recall that when −1 < γ < 0 more
heat is transported to the fuel side and, consequently, the fuel is the more completely
consumed reactant. When 0 < γ < 1 on the other hand more heat is transported
to the oxidant side and, consequently, the oxidant is the more completely consumed
reactant. For unity Lewis numbers, and when the fuel and oxidant are supplied at the
same temperature there is a simple relation between the parameter φ, which is based
on the supply conditions, and γ which measures conditions at the reaction sheet. In
this case γ = (φ − 1)/(φ + 1) so that for φ < 1, the fuel is the more completely
consumed reactant, whereas for φ > 1 the oxidant is the more completely consumed
reactant. In general, however, γ depends on the rates at which heat and mass are
transported to the reaction zone, namely on the temperature differential ∆T and on
LX − 1.
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The leakage functions SF and SX are given by (3.45), (3.47), (3.46) and (3.48),
respectively, where δ is determined by the relation (3.39) with h∗F and h∗X given by

h∗F = −
{
LF (1− exf )− (1− eLFxf )

1− eLFxf

}
SF,

h∗X = −LF
LX

{
LX(1− exf )− (1− eLXxf )

1− eLFxf

}
SF.

 (5.9)

Note that for unity Lewis numbers the enthalpies T + Y and T + X are conserved
scalars, in which case h∗F = h∗X = 0, as anticipated. Then, δ = 4LFLXD is fixed
by the Damköhler number. For non-unity Lewis numbers h∗i is positive/negative
depending on whether Li is less/greater than 1, respectively. The total enthaply
(1 + γ)h∗X/2 + (1 − γ)h∗F/2, however, depends on both Lewis numbers and on the
reactant leakages. The dependence of δ on D is therefore more complex.

5.2. Linear stability analysis

We introduce small disturbances ∼ ε θ−1, superimposed on the basic state, denoted
here with subscript b, with ε � 1. The disturbances are then resolved into normal
modes so that the temperature and mass fractions are expressed in the form†

T = Tb(x) + ε θ−1 τ(x) exp (ik1y + ik2z + σt) + · · · ,
Y = Yb(x) + ε θ−1 η(x) exp (ik1y + ik2z + σt) + · · · ,
X = Xb(x) + ε θ−1 ξ(x) exp (ik1y + ik2z + σt) + · · · ,

 (5.10)

with the location of the reaction sheet given by

x = xf + ε θ−1A exp (ik1y + ik2z + σt).

Here εA is the (small) amplitude, k1 and k2 are the wavenumbers in the y- and
z-directions, respectively, and σ is a complex number whose real part identifies the
growth rate of the disturbance. Substituting into the governing equations (5.3)–(5.5),
one finds

d2τ

dx2
− dτ

dx
− (σ + k2)τ = 0,

d2η

dx2
− LF dη

dx
− (LFσ + k2)η = 0,

d2ξ

dx2
− LX dξ

dx
− (LXσ + k2)ξ = 0,

where k = (k2
1 + k2

2)1/2 is the total wavenumber. Solutions, which vanish at x = 0 and

† No confusion is caused by using here symbols that were used previously in analysing the
reaction zone structure.
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as x→ −∞, are

τ =

{
C1 exp [( 1

2
+ λT )x], x < xf

D1{exp [( 1
2

+ λT )x]− exp [( 1
2
− λT )x]}, x > xf,

η =

{
C2 exp [( 1

2
LF + λF )x], x < xf

D2{exp [( 1
2
LF + λF )x]− exp [( 1

2
LF − λF )x]}, x > xf,

ξ =

{
C3 exp [( 1

2
LX + λX)x], x < xf

D3{exp [( 1
2
LX + λX)x]− exp [( 1

2
LX − λX)x]}, x > xf,

where

λj = 1
2

√
L2
j + 4(Ljσ + k2), j = T , F,X,

with LT ≡ 1. Because of our interest in identifying unstable solutions, we have
restricted attention to modes corresponding to Re(σ) > 0, a condition that has been
used in discarding the exponentially growing solutions for large negative x.

The jump relationships (4.7)–(4.8) yield

[τ] = −L−1
F [η] = −L−1

X [ξ],[
τ− dτ

dx

]
= −

[
η − L−1

F

dη

dx

]
= −

[
ξ − L−1

X

dξ

dx

]
,

to be satisfied across x = xf . Thus

τ+ − τ− + L−1
F η

+
f − L−1

F η
−
f = 0, (5.11)

τ+ − τ− + L−1
x ξ

+
f − L−1

x ξ
−
f = 0, (5.12)

aT τ
+ + ( 1

2
− λT )τ− + aF η

+ + ( 1
2
− L−1

F λF ) η− = 0, (5.13)

aT τ
+ + ( 1

2
− λT )τ− + aX ξ

+ + ( 1
2
− L−1

X λX) ξ− = 0, (5.14)

with the superscripts ± denoting conditions at x = x±f , respectively, and where

aj =
1

Lj

( 1
2
Lj + λj) exp [−λjxf]− ( 1

2
Lj − λj) exp [λjxf]

exp [λjxf]− exp [−λjxf] , j = T , F,X.

It thus remains to apply conditions (4.13). The expansions (5.10) imply that δ can
also be written as

δ ∼ δb + εδ̂ exp (ik1y + ik2z + σt)

with

δb = 4LFLXD exp

{
1 + γ

2
(h∗X)b +

1− γ
2

(h∗F )b

}
.

The exponent in (3.39) takes the form

1 + γ

2
(h∗X)b +

1− γ
2

(h∗F )b

+ ε

{
1 + γ

2
(τ− + L−1

X ξ
−) +

1− γ
2

(τ+ + L−1
F η

+)

}
exp (ik1y + ik2z + σt)
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where (h∗X)b and (h∗F )b are given by (5.9). Upon linearization one finds

δ̂ = δb

{
1 + γ

2
(τ− + L−1

X ξ
−) +

1− γ
2

(τ+ + L−1
F η

+)

}
.

Now, expanding the functions SF and SX for ε � 1, we have

SF = SF (γ, δb) + ε
∂SF

∂δ
(γ, δb)δ̂ exp (ik1y + ik2z + σt) + · · · ,

SX = SX(γ, δb) + ε
∂SX

∂δ
(γ, δb)δ̂ exp (ik1y + ik2z + σt) + · · · ,

so that the disturbance in the fuel and oxidant leakages

η+ = LF
∂SF

∂δ
(γ, δb)δ̂, ξ− = LX

∂SX

∂δ
(γ, δb)δ̂,

are expressed in terms of the leakage functions SF (γ, δb) and SX(γ, δb) of the basic
state. We thus find that

1− γ
2

LF bF τ
+ +

1 + γ

2
LF bF τ

− +

(
1− γ

2
bF − 1

)
η+ +

LF

LX

1 + γ

2
bFξ

− = 0, (5.15)

1− γ
2

LX bX τ
+ +

1 + γ

2
LX bX τ

− +
LX

LF

1− γ
2

bX η
+ +

(
1 + γ

2
bX − 1

)
ξ− = 0, (5.16)

where

bj = δb

∂Sj

∂δ
(γ, δb), j = F,X.

The six relations (5.11)–(5.16) form a homogeneous linear system which has non-trivial
solutions if and only if∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 −1 L−1
F −L−1

F 0 0

1 −1 0 0 L−1
X −L−1

X

aT
1
2
− λT aF

1
2
− L−1

F λF 0 0

aT
1
2
− λT 0 0 aX

1
2
− L−1

X λX

1− γ
2

LFbF
1 + γ

2
LF bF

1− γ
2

bF − 1 0 0
LF

LX

1 + γ

2
bF

1− γ
2

LXbX
1 + γ

2
LX bX

LX

LF

1− γ
2

bX 0 0
1 + γ

2
bX − 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= 0.

This solvability condition is the dispersion relation that relates the growth rate σ to
the remaining parameters: the wavenumber k, the Damköhler number D, the Lewis
numbers LF and LX , the mixture’s strength φ and the temperature differential ∆T . It
takes the form

δb

∂SF

∂δb

{
1− γ

2

[λF coth(λFxf)− λX coth(λXxf)]− 1
2
(LF − LX)

[λF − λF coth(λFxf)][λX − λX coth(λXxf)]

+
[λX coth(λXxf)− λT coth(λTxf)]− 1

2
(LX − 1)

[λX − λX coth(λXxf)][λT − λT coth(λTxf)]

}
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+ δb

∂SX

∂δb

{
1 + γ

2

(λF − λX)− 1
2
(LF − LX)

[λF − λF coth(λFxf)][λX − λX coth(λXxf)]

+
(λT − λF )− 1

2
(1− LF )

[λT − λT coth(λTxf)][λF − λF coth(λFxf)]

}

−
{

[λF − λX coth(λXxf)]− 1
2
(LF − LX)

[λX − λX coth(λXxf)][λF − λF coth(λFxf)]

}
= 0. (5.17)

Generally, solutions of this transcendental equation must be found numerically. Before
discussing the numerical results we examine some special limits.

We first consider the limit D → ∞ corresponding to complete combustion – the
‘Burke–Schumann’ limit. In this case SF, SX → 0 and the dispersion relation simplifies
to

tanh (λX xf) =
2λX

LX + (2λF − LF )
.

For real values of σ the left-hand side is negative, since xf < 0 , while the right-
hand side is always positive. There are no solutions to the dispersion relation with
σ real. When σ is complex, by decomposing the dispersion relation into its real and
imaginary parts, it can likewise be verified that no solutions with Re(σ) > 0 exist. We
conclude that, for all values of the Lewis numbers, there are no unstable modes in
the limit D → ∞. The Burke–Schumann flame sheet is therefore unconditionally stable
to small disturbances.

When the Lewis numbers are both equal, and equal to 1, the left-hand side of
(5.17) reduces to −[λT (1− coth(λTxf)]

−1 which is strictly negative for all k so that the
dispersion relation can never be satisfied. We conclude that when the thermal and mass
diffusivities are all equal, the flame is unconditionally stable to small disturbances.†

5.3. Cellular instability

In the following we will be only concerned with real values of the growth rate σ.
Thus, at an instability threshold the bifurcation is steady and describes the onset of
cellular flames. The occurrence of a Hopf bifurcation with Im (σ) 6= 0 at the instability
threshold, associated with the onset of pulsating flames and/or travelling waves along
the flame front, will be discussed in a future publication. Consequently, we restrict
attention here to Lewis numbers that are less than or equal to 1, i.e. LF 6 1 and
LX 6 1, disregarding the case LF = LX = 1 which has been already discussed above.

It is instructive to examine the dispersion relation in the limit k →∞ with σ = O(1).
Since λj ∼ k, we find that

1

4

{
δb

∂SF

∂δb

− δb

∂SX

∂δb

}{
1− γ

2
(1− LF ) +

1 + γ

2
(1− LX)

}
+ 1

4
(LF − LX) ∼ k.

A balance between the left- and right-hand sides can be achieved near the turning
point δ ≈ δc, where the slopes ∂SF/∂δb and/or ∂SX/∂δb become large, or at large
δ on the upper branch of the response curve. In particular, such a balance is not
possible for states corresponding to the lower branch of the response curve, remote
from δ = δc. Thus, for sufficiently large values of δ, steady states on the lower branch

† This holds as long as SF (or SX) are O(1) quantities and therefore excludes states on the upper
branch of the SF , δ curve that are sufficiently far from δc. Such states are of no physical interest.



136 S. Cheatham and M. Matalon

100

75

50

25

0

–25

–50
0 20 40 60 80 100

Lower
branch

Upper
branch

0.8431
0.85

0.84301
0.843003

d

k

r

Figure 8. The dependence of the growth rate on the wavenumber, for LF = 0.5, LX = 1.0,
and φ = 2 (γ = 1/3, δc = 0.84300296).

of the response curve are stable to short-wavelength disturbances. Near the turning
point, however, unstable modes corresponding to large k are possible, with results
sensitive to the value of γ. For values of γ sufficiently positive, |∂SX/∂δb| � |∂SF/∂δb|
which implies that

k ∼ 1
4
δb

∂SF

∂δb

{
1− γ

2
(1− LF ) +

1 + γ

2
(1− LX)

}
. (5.18)

Thus, unstable modes with large k can be found on the upper branch of the response
curve, where ∂SF/∂δb > 0. For values of γ sufficiently negative, |∂SF/∂δb| � |∂SX/∂δb|
so that

k ∼ − 1
4
δb

∂SX

∂δb

{
1− γ

2
(1− LF ) +

1 + γ

2
(1− LX)

}
. (5.19)

Now, unstable modes with large k can also be found on the lower branch of the
response curve, where ∂SX/∂δb < 0.

Numerical solutions of the full dispersion relation (5.17) for values of δb near δc
confirm these assertions. In figures 8 and 9 the dependence of σ on k is shown for
the same values of the Lewis numbers and δb, but for values of γ of opposite sign.
In figure 8 one sees that for γ > 0, solutions on the lower branch of the response
curve are stable and those on the upper branch are always unstable. As δb → δc
from the upper branch, this instability corresponds to large k, as suggested by (5.18);
long-wavelength disturbances (small k) are in fact stable. Note also from figure 8
that the instability on the upper branch, for δb − δc < 10−6, occurs for large but
finite k suggesting that, as δb → δc, the exchange of stability may in fact correspond
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Figure 9. The dependence of the growth rate on the wavenumber, for LF = 0.5, LX = 1.0, and
φ = 0.5 (γ = −1/3, δc = 0.84300296).

to k → ∞. In figure 9, one sees that for γ < 0, solutions on the upper branch are
always unstable with σ →∞ as k →∞. Here, however, solutions on the lower branch
are also unstable: the associated growth rates increase with increasing k, reach a
maximum, and then decrease, becoming negative for k > kmax. As δb → δc from the
lower branch, the range of unstable modes widens and kmax becomes exceedingly
large, as suggested by (5.19). It is clear from the dependence of σ on k revealed in
figure 9 that for γ < 0 the onset of instability occurs at some value of δb on the lower
branch, sufficiently far from δc, but not too far, since we have shown that the steady
states are unconditionally stable as δb →∞.

We remarked earlier that, away from the turning point, the dispersion relation
implies that steady states on the lower branch of the response curve are stable to
short-wavelength disturbances and the numerical calculations corroborate the lack
of a short-wavelength instability for δ sufficiently far from δc. This suggests that for
γ < 0 the onset instability occurs at some value of δb on the lower branch of the
response curve and that such instabilities correspond to O(1) values of k. As γ is
increased the critical δb corresponding to the onset of instability moves toward δc,
and the wavenumber at onset of instability increases, becoming large as γ becomes
positive.

So far we have been referring to the ‘response curve’ as the curve that illustrates
the dependence of the basic state, characterized for example by the leakage of one
of the reactants, on δb (which appears quite naturally in the analysis). Since the
Damköhler number is the physically controllable parameter, it is more appropriate to
illustrate the dependence of the solution on D so that for fixed values of the remaining
parameters the response curve identifies the state corresponding to a given D. Burning
states correspond to Dex < D < ∞. We recall, however, that the dependence of δ on
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D identifying in each the states corresponding to extinction and to marginal stability.

D is in general nonlinear so that δc and Dex do not represent the same physical state.
Depending on the Lewis numbers, δc may correspond to a state D = Dc on the upper
or lower branch of the response curve drawn against D. In particular, it appears that
for Lewis numbers less than 1, as considered here, the state corresponding to δc is
a state on the lower branch of the response curve, namely Dc > Dex as illustrated in
figure 10. Thus, the steady states corresponding to Dex < D < Dc are solutions on
the upper branch of the SF, δb curve and, according to the results of figures 8 and
9, are unstable. Furthermore, the unstable modes extend to sufficiently large values
of k and the associated growth rates σ are quite large. Such disturbances therefore
evolve on a relatively ‘fast time’. This behaviour is consistent with the results of
Kim et al. (1996) who re-examined the problem by re-scaling time on the reaction
zone thickness in order to determine the wavenumber corresponding to maximum
growth rate. However, unlike their conclusion that the marginal stability state is that
corresponding to Dc, we identify here unstable modes for D > Dc that evolve on the
(ordinary) diffusion time scale. Figure 11, for example, shows the dependence of the
growth rate σ on k for D > Dc. We note that for sufficiently large D the growth
rate σ < 0, implying stability. Furthermore, for D < D∗ say, there is a limited range
of growing modes with the maximum growth rate corresponding to kmax ∼ 1–2. As
D → Dc the growth rate as well as kmax become large, in accord with our previous
conclusions.

We have thus seen that by reducing the Damköhler number, starting from large
values, a point is reached below which the planar flame becomes unstable. The critical
point, corresponding to D = D∗, identifies the onset of a cellular flame, with distinct
cell size ∼ 2π/kmax. We shall now examine the dependence of the marginal states
on the Lewis numbers and mixture strength. For simplicity, we assume equal fuel
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Figure 12. Stability curves showing regions of stability/instability in the parameter plane of LF
versus k. Calculated for LX = 1.0, and φ = 0.5 (γ = −1/3, δc = 0.84300).

and oxidant supply temperatures, i.e. ∆T = 0. The results are based on numerical
solutions of the transcendental equation (5.17).

We found that cellular instability results when the reactant supplied in the feed
stream (here the fuel) is the more completely consumed reactant (γ < 0), and the
corresponding Lewis number is sufficiently small (LF < L∗F ). Figure 12 shows marginal
stability curves (σ = 0) in the parameter plane LF vs. k for LX = 1 and φ = 0.5.
The different curves correspond to different values of δ. For a given value of LF , the
unstable modes are restricted to a finite range of wavelengths, provided LF < L∗F . As
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Figure 14. Response curves of SX ∼ oxidant leakage versus δ, for LX = LF = 0.5 and several
values of the oxidant source mass fraction φ. Darkened portions of the response curves correspond
to unstable states.

δ approaches δc, this range increases, as does the range of the fuel Lewis numbers
over which instability may be found. Figure 13 shows similar curves but for LX = 0.6.
The comparison shows that cellular instability is more accessible when the Lewis
number of the oxidant LX is lowered; it results for a larger range of both LF and δ.
Thus, there exists a critical oxidant Lewis number L∗X above which no instability can
be found. The two critical values L∗F and L∗X are inversely related. Finally we note
that, as δ → δc, the range of unstable modes extends to large wavenumbers.

The dependence of the instability on the parameter φ is illustrated in figure 14.
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Figure 15. Regions of stability/instability in the parameter plane LF, LX , calculated for several
values of δ − δc and (a) φ = 1/3, (b) φ = 1.0, (c) φ = 2.0.

Here response curves of the oxidant leakage SX versus δ are shown for several values
of φ. The darkened segments of the response curves correspond to unstable states. As
φ is decreased, the parameter γ decreases, signifying that the fuel is becoming more
deficient in the reaction zone, and instability is found over a greater range of δ. The
critical wavenumber kc increases with increasing φ.

Figures 15(a–c) shows curves in the parameter plane LF versus LX that separate
regions where the planar flame is stable from regions where a cellular instability
results. The different curves correspond to different values of δ, and the different
graphs to different values of φ. The closer δ is to δc the wider the range of Lewis
numbers for which cellular instability results. This range, however, shrinks as φ
increases. Thus, cellular flames are more likely to occur when φ is small, namely
when the fuel stream is sufficiently diluted. Consistent with our earlier predictions,
the figures show that the flame is stable when both Lewis numbers are equal to 1.

5.4. Discussion

As in premixed systems, the disparity between the thermal diffusivity of the mixture
and the molecular diffusivities of the reactants is responsible for the development of
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cellular diffusion flames. The situation in non-premixed systems, however, is some-
what more complex. When the Damköhler number is sufficiently large, corresponding
to a short chemical reaction time or fast chemistry, combustion occurs almost in-
stantaneously and is therefore constrained to the stoichiometric surface – the surface
where fuel and oxidant meet in stoichiometric proportions. The fuel and oxidant are
completely consumed and the reaction sheet separates a region of fuel but no oxidant
from a region where there is only oxidant. Since complete combustion, dictated by
the short chemical reaction time, can only occur along the stoichiometric surface any
slight disturbance of the reaction sheet is obliterated and the planar flame is stable.
For smaller values of the Damköhler number there is incomplete combustion with
significant reactants leakage. The degree of fuel and oxidant consumption in this case
depends strongly on their transport to the reaction sheet, and therefore on the Lewis
numbers. While thermal diffusion tends to nullify temperature differences, and hence
has a stabilizing influence, molecular diffusivity may enhance these differences. For
Lewis numbers less than 1, molecular diffusivity is larger than the thermal diffusivity
and therefore plays a more important role. Furthermore, the reactant supplied in
the feed stream – the fuel in the configuration examined here (see figure 7) – plays a
more significant role than the reactant diffusing against the stream. Now, consider
the situation in which the reaction sheet is slightly corrugated. Near segments of the
wrinkled sheet convex towards the fuel region the isotherms on the fuel side are more
dense while on the oxidant side they spread out. Consequently, the oxidant leakage
through the reaction sheet increases providing the necessary oxidant concentration
for the reaction to proceed, thus overcoming its natural tendency to revert to the
stoichiometric surface. Under these conditions the more natural mode of burning is
therefore along a cellular reaction sheet.

We have shown that cellular instability results in diffusion flames only for near
extinction conditions, namely when there is significant reactant leakage through the
reaction zone. Experiments likewise indicate that the onset of cellularity is usually
associated with high flow rates (Garside & Jackson 1953; Dongworth & Melvin 1976)
or near-extinction conditions (Ishizuka & Tsuji 1981; Chen et al. 1992), namely for
low values of the Damköhler number D. Furthermore, the instability results when the
reactant supplied in the feed stream (here the fuel) is the more completely consumed
reactant and the corresponding Lewis number (here LF ) is sufficiently small, in other
words when SF < SX (or γ < 0) and LF < L∗F . The experimental results reported by
Dongworth & Melvin (1976), Ishizuka & Tsuji (1981) and Chen et al. (1992) indicate
that cellular flames were observed for an H2–O2 flame when the hydrogen was diluted
in nitrogen or argon; in these cases LF ∼ 0.35–0.33 is sufficiently low. Cellularity was
not observed when the diluent was helium, in which case LF ∼ 1.02 is too large.

We have also shown that for a diffusion flame to exhibit cellular instability both
Lewis numbers must be below critical values, namely LF < L∗F , LX < L∗X . Recall
that we have limited the discussion to Lewis numbers less than 1 so that it may
be possible for an instability to exist when LX exceeds 1 if LF is sufficiently low, or
when LF exceeds 1 if LX is sufficiently low. The stability/instability regions mapped
in the Lewis numbers parameter plane (figure 15) are in complete agreement with the
careful account of flame behaviour given in Chen et al. (1992). It was reported there
that a methane–oxygen flame diluted in He or N2 (LF = 1.83, 0.96 and LX = 1.64, 1.01
respectively) did not exhibit cellularity, but it did when diluted in SF6 (LF = 0.39 and
LX = 0.48). Similarly a propane–oxygen flame diluted in N2 and CO2 (LF = 1.79, 1.39
and LX = 0.99, 0.80 respectively) did not exhibit cellularity but it did when diluted in
SF6 (LF = 0.70 and LX = 0.53).
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One notes from (5.8) that for ∆T = 0 the parameter γ decreases both as φ or
LX decreases. As γ decreases, there is more oxidant and less fuel leakage through
the reaction zone, which suggests that the flame becomes more and more susceptible
to cellularity when φ is reduced. This trend, which can be also detected from the
stability diagrams, is in agreement with the observations reported by Chen et al.
(1992). A hydrogen–oxygen flame diluted with nitrogen was non-cellular with φ = 2,
but became cellular when φ was reduced to 1.

The fastest growing mode, which would become the dominant one beyond the
instability threshold, is indicative of the dimension of the cells that develop on the
flame. The (dimensional) critical wavelength is 2π`D/kmax. Our results show that
kmax ∼ 0.7–1.4 which implies that with a thermal diffusivity ∼ 0.22 cm2 s−1 and
velocities U ∼ 1–2 cm s−1 (typical normal velocity component estimated from the
various experimental set-ups) the predicted cells are ∼ 0.5–2 cm, which is within the
observed range. A more direct comparison would require more accurate knowledge
of the characteristic velocity U, for the determination of the diffusion length `D and
of the Damköhler number D, for the determination of kmax. Neither one could be
obtained with sufficient accuracy that would improve the above estimate.

As alluded to earlier, the results discussed here are contingent on the fuel being
provided in the feed stream, in which case the net mass flux is directed from the fuel
side towards the oxidant side. The results of the equivalent but opposite problem, in
which the oxidant is supplied in the feeding stream, are obtained by interchanging
the role of F and X in the solution. Instability in this case would occur for rich
flames. The result that cellularity is associated with a lean flame is consistent with
the splitter-plate experiment of Dongworth & Melvin (1976) who hypothesized that
cellularity was peculiar to lean (fuel deficient) flames. Our prediction that cellularity
could also result in rich flames is contingent upon having an oxidant with sufficiently
low Lewis number. These however are seldom found, which may explain why cellular
flames under rich conditions were not observed.

This work has been partially supported by the National Science Foundation under
grants DMS9703716 and CTS9521022. Some of this work was performed while S.
Cheatham held a National Research Council-Naval Research Laboratory Research
Associateship.

REFERENCES

Ascher, U. Christiansen, J. & Russell, R. D. 1981 COLSYS: Collocation Software for Boundary
Value ODE’s. ACM Transaction on Mathematical Software, vol. 7, pp. 209–222.

Buckmaster, J. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge University Press.

Buckmaster, J., Nachman, A. & Taliaferro, S. 1983 The fast-time instability of diffusion flames.
Physica 9D, 408–424.

Buckmaster, J. D. & Short, M. 1999 Cellular instabilities, sublimit structures and edge-flames in
premixed counterflows. Combust. Theory Modelling 3, 199–214.

Burke, S. P. & Schumann, T. E. W. 1928 Diffusion flames. Indust. Engng Chem. 20, 998–1004.

Cheatham, S. 1997 On the structure and stability of diffusion flames. PhD thesis, Northwestern
University.

Cheatham, S. & Matalon, M. 1996a Near-limit oscillations of spherical diffusion flames. AIAA J.
34, 1403–1409.

Cheatham, S. & Matalon, M. 1996b Heat loss and Lewis number effects on the onset of oscillations
in diffusion flames. Twenty-Sixth Symp. (Intl) on Combustion, pp. 1063–1070. The Combustion
Institute, Pittsburgh.

Chen, R., Mitchell, G. B. & Ronney, P. D. 1992 Diffusive-thermal instability and flame extinction



144 S. Cheatham and M. Matalon

in nonpremixed combustion. Twenty-Fourth Symp. (Intl) on Combustion, pp. 213–221. The
Combustion Institute, Pittsburgh.

Chung, S. H. & Law, C. K. 1983 Structure and extinction of convective diffusion flames with
general Lewis numbers. Combust. Flame 52, 59–79.

Dongworth, M. R. & Melvin, A. 1976 The transition to instability in a steady hydrogen–oxygen
diffusion flame. Combust. Sci. Technol. 14, 177–182.

Fischer, I., Buckmaster, J., Lozinski, D. & Matalon, M. 1994 Vapor diffusion flames, their
stability, and annular pool fires. In Modeling in Combustion Science, pp. 249–257. Springer.

Gardside, J. E. & Jackson, B. 1951 Polyhedral diffusion flames. Nature 168, 1085.

Gardside, J. E. & Jackson, B. 1953 The formation and some properties of polyhedral burner
flames. Fourth Symp. (Intl) on Combustion, pp. 545–552. The Combustion Institute, Pittsburgh.

Ida, M. P. & Miksis, M. J. 1998 The dynamics of thin films I: General theory. SIAM J. Appl. Maths
58, 456–473.

Ishizuka, S. & Tsuji, H. 1981 An experimental study of effect of inert gases on extinction of
laminar diffusion flames. Eighteenth Symp. (Intl) on Combustion, pp. 695–703. The Combustion
Institute, Pittsburgh.

Kim, J. S. 1997 Linear analysis of diffusional-thermal instability in diffusion flames with Lewis
numbers close to unity. Combust. Theory Modeling 1, 13–40.

Kim, J. S. & Williams, F. A. 1997 Extinction of diffusion flames with nonunity Lewis numbers.
J. Engng Maths 31, 101–118.

Kim, J. S., Williams, F. A. & Ronney, P. D. 1996 Diffusional–thermal instability of diffusion flames.
J. Fluid Mech. 327, 273–301.

Kirkby, L. L. & Schmitz, R. A. 1966 An analytical study of the stability of a laminar diffusion
flame. Combust. Flame 10, 205–220.

Linan, A. 1974 The asymptotic structure of counterflow diffusion flames for large activation energies.
Acta Astronautica 1, 1007–1039.

Linan, A. & Williams, F. A. 1993 Fundamental Aspects of Combustion. Oxford.

Matalon, M. & Ludford, G. S. S. 1980 On the near-ignition stability of diffusion flames. Intl J.
Engng Sci. 18, 1017–1026.

Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124,
239–259.

Matalon, M. & Matkowsky, B. J. 1983 Flames in fluids: Their interactions and stability. Combust.
Sci. Technol. 34, 295–316.

Mills, K. & Matalon, M. 1997 Burner-generated spherical diffusion flames. Combust. Sci. Technol.
129, 295–319.

Mills, K. & Matalon, M. 1998 Extinction of spherical diffusion flames in the presence of radiant
loss. Twenty-Seventh Symp. (Intl) on Combustion, pp. 2535–2541. The Combustion Institute,
Pittsburgh.

Peters, N. 1978 On the stability of linan’s premixed flame regime. Combust. Flame, 33, 315–318.

Peters, N. 1983 Local quenching due to flame stretch and non-premixed turbulent combustion.
Combust. Sci. Technol. 30, 1–17.

Peters, N. 1986 Laminar flamelet concept in turbulent combustion. Twenty-First Symp. (Intl) on
Combustion, pp. 1231–1250. The Combustion Institute, Pittsburgh.

Rosenhead, L. 1963 Laminar Boundary Layers. Oxford University Press.

Sivashinsky, G. I. 1977 Diffusional-thermal theory of cellular flames. Combust. Sci. Technol. 15,
137–145.

Weatherburn, C. E. 1947 Differential Geometry of Three Dimensions. Cambridge University Press.

Williams, F. A. 1985 Combustion Theory. Benjamin/Cummings.

Yao, J. & Stewart, D. S. 1996 On the dynamics of multi-dimensional detonation. J. Fluid Mech.
309, 225–275.


